Question
Mathematics Question on Trigonometric Equations
If tanA=x(x2+x+1)1,tanB=x2+x+1x and tanC=(x3+x2+x−1)21,0<A,B,C<2π,then A+B is equal to:
A
C
B
π−C
C
2π−C
D
2π−C
Answer
C
Explanation
Solution
Finding tan(A+B), we get:
⟹tan(A+B)=1−tanAtanBtanA+tanB
Substituting the values:
⟹tan(A+B)=1−x2+x+1xx2+x+11+x2+x+1x
Simplifying the numerator and denominator:
⟹tan(A+B)=(x2+x)(x)(1+x)(x2+x+1)
Rewriting:
tan(A+B)=xxx2+x+1=tanC
Therefore:
A+B=C