Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If tanA=1x(x2+x+1),tanB=xx2+x+1\tan A = \frac{1}{\sqrt{x(x^2 + x + 1)}}, \quad \tan B = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}} and tanC=(x3+x2+x1)12,0<A,B,C<π2\tan C = \left(x^3 + x^2 + x^{-1}\right)^{\frac{1}{2}}, \quad 0 < A, B, C < \frac{\pi}{2},then A+BA + B is equal to:

A

CC

B

πC\pi - C

C

2πC2\pi - C

D

π2C\frac{\pi}{2} - C

Answer

CC

Explanation

Solution

Finding tan(A+B)\tan(A + B), we get:

    tan(A+B)=tanA+tanB1tanAtanB\implies \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
Substituting the values:

    tan(A+B)=1x2+x+1+xx2+x+11xx2+x+1\implies \tan(A + B) = \frac{\frac{1}{x^2+x+1} + \frac{\sqrt{x}}{\sqrt{x^2+x+1}}}{1 - \frac{\sqrt{x}}{x^2+x+1}}
Simplifying the numerator and denominator:

    tan(A+B)=(1+x)(x2+x+1)(x2+x)(x)\implies \tan(A + B) = \frac{(1 + x)(\sqrt{x^2+x+1})}{(x^2+x)(\sqrt{x})}

Rewriting:

tan(A+B)=x2+x+1xx=tanC\tan(A + B) = \frac{\sqrt{x^2 + x + 1}}{x\sqrt{x}} = \tan C
Therefore:
A+B=CA + B = C