Solveeit Logo

Question

Question: If \[\tan A = \dfrac{1}{{\sqrt 3 }}\] then find the value of \[\dfrac{{{\text{cose}}{{\text{c}}^2}A ...

If tanA=13\tan A = \dfrac{1}{{\sqrt 3 }} then find the value of cosec2Asec2Acosec2A+sec2A\dfrac{{{\text{cose}}{{\text{c}}^2}A - {{\sec }^2}A}}{{{\text{cose}}{{\text{c}}^2}A + {{\sec }^2}A}}.

Explanation

Solution

Hint: First, we will find the value of AA using the given value of tanA\tan A and taking tan1{\tan ^{ - 1}} on both the sides in the given equation. Then we will substitute the value of AA in the given expression cosec2Asec2Acosec2A+sec2A\dfrac{{{\text{cose}}{{\text{c}}^2}A - {{\sec }^2}A}}{{{\text{cose}}{{\text{c}}^2}A + {{\sec }^2}A}} to find the required value.

Complete step-by-step answer:

It is given thattanA=13\tan A = \dfrac{1}{{\sqrt 3 }}.

We know that the value of the tangential function at 30 degrees is tan30=13\tan 30 = \dfrac{1}{{\sqrt 3 }}.
Using the value in the given equation, we get

tanA=13 tanA=tan30  \tan A = \dfrac{1}{{\sqrt 3 }} \\\ \Rightarrow \tan A = \tan 30 \\\

We know that the inverse tan\tan is the inverse function of the trigonometric function ‘tangent’.

We also know that the property of the tangential property, tan1tanx=x{\tan ^{ - 1}}\tan x = x.

Taking tan1{\tan ^{ - 1}} in the above equation on each of the sides, we get

tan1tanA=tan1tan30 A=30  \Rightarrow {\tan ^{ - 1}}\tan A = {\tan ^{ - 1}}\tan 30 \\\ \Rightarrow A = 30 \\\

Substituting this value of AA in the given expression cosec2Asec2Acosec2A+sec2A\dfrac{{{\text{cose}}{{\text{c}}^2}A - {{\sec }^2}A}}{{{\text{cose}}{{\text{c}}^2}A + {{\sec }^2}A}} to find the required value, we get

cosec230sec230cosec230+sec230=4(23)24+(23)2 =4434+43 =124412+44 =84164 =816 =12  \dfrac{{{\text{cose}}{{\text{c}}^2}30 - {{\sec }^2}30}}{{{\text{cose}}{{\text{c}}^2}30 + {{\sec }^2}30}} = \dfrac{{4 - {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2}}}{{4 + {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2}}} \\\ = \dfrac{{4 - \dfrac{4}{3}}}{{4 + \dfrac{4}{3}}} \\\ = \dfrac{{\dfrac{{12 - 4}}{4}}}{{\dfrac{{12 + 4}}{4}}} \\\ = \dfrac{{\dfrac{8}{4}}}{{\dfrac{{16}}{4}}} \\\ = \dfrac{8}{{16}} \\\ = \dfrac{1}{2} \\\

Hence, cosec2Asec2Acosec2A+sec2A=12\dfrac{{{\text{cose}}{{\text{c}}^2}A - {{\sec }^2}A}}{{{\text{cose}}{{\text{c}}^2}A + {{\sec }^2}A}} = \dfrac{1}{2}.

Note: In this question, first of all, students should use the properties of trigonometry to make it easier to find the required value. Also, in these types of questions, we can also find the value of the angle by using the Pythagorean theorem h2=a2+b2{h^2} = {a^2} + {b^2}, where hh is the hypotenuse, aa is the height and bb is the base of the triangle, on two given sides of trigonometric function by drawing the triangle and find the third value of the triangle, only when the value cannot be calculated directly.