Solveeit Logo

Question

Question: If \(\tan A + \cot A = 4,\) then \(\tan^{4}A + \cot^{4}A\) is equal to...

If tanA+cotA=4,\tan A + \cot A = 4, then tan4A+cot4A\tan^{4}A + \cot^{4}A is equal to

A

110

B

191

C

80

D

194

Answer

194

Explanation

Solution

tanA+cotA=4\tan A + \cot A = 4

tan2A+cot2A+2tanAcotA=16\Rightarrow \tan^{2}A + \cot^{2}A + 2\tan A\cot A = 16

tan2A+cot2A=14tan4A+cot4A+2=196\Rightarrow \tan^{2}A + \cot^{2}A = 14 \Rightarrow \tan^{4}A + \cot^{4}A + 2 = 196

tan4A+cot4A=194.\Rightarrow \tan^{4}A + \cot^{4}A = 194.