Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If tanA+cotA=2|tan \,A + \cot \,A = 2, then the value of tan4A+cot4A=\tan^4 A + \cot^ 4 A =

A

2

B

1

C

4

D

5

Answer

2

Explanation

Solution

tanA+cotA=2\tan \,A+\cot \,A=2
(tanA+cotA)2=4\Rightarrow(\tan \,A+\cot \,A)^{2}=4
tan2A+cot2A+2tanAcotA=4\Rightarrow \tan ^{2} A+\cot ^{2} A+2 \tan \,A \cot\, A=4
tan2A+cot2A=2\Rightarrow \tan ^{2} A+\cot ^{2} A=2
(tan2A+cot2A)2=4\Rightarrow\left(\tan ^{2} A+\cot ^{2} A\right)^{2}=4
tan4A+cot4A+2tan2Acot2A=4\Rightarrow \tan ^{4} A+\cot ^{4} A+2 \tan ^{2} A \cot ^{2} A=4
tan4A+cot4A=2\Rightarrow \tan ^{4} A+\cot ^{4} A=2