Solveeit Logo

Question

Question: If tan A and tan B are the roots of the equation x<sup>2</sup> – px + q = 0, the value of sin<sup>2...

If tan A and tan B are the roots of the equation

x2 – px + q = 0, the value of sin2(A + B) is –

A

p2p2(1q)2\frac{p^{2}}{p^{2}–(1 - q)^{2}}

B

p2p2+(1q2)\frac{p^{2}}{p^{2} + (1 - q^{2})}

C

p2p2(1q2)\frac{p^{2}}{p^{2}–(1 - q^{2})}

D

None of these

Answer

p2p2+(1q2)\frac{p^{2}}{p^{2} + (1 - q^{2})}

Explanation

Solution

tan A + tan B = p

tan A. tan B = q

tan (A + B) = tanA+tanB1tanAtanB=p1q\frac{\tan A + \tan B}{1 - \tan A\tan B} = \frac{p}{1 - q}

sin2 (A + B) = 1cos2(A+B)2\frac{1 - \cos 2(A + B)}{2}

= 12\frac{1}{2} [11tan2( A+B)1+tan2( A+B)]\left[ 1 - \frac { 1 - \tan ^ { 2 } ( \mathrm {~A} + \mathrm { B } ) } { 1 + \tan ^ { 2 } ( \mathrm {~A} + \mathrm { B } ) } \right]

=tan2( A+B)1+tan2( A+B)\frac { \tan ^ { 2 } ( \mathrm {~A} + \mathrm { B } ) } { 1 + \tan ^ { 2 } ( \mathrm {~A} + \mathrm { B } ) }= p2/(1q)21+(p2/(1q)2)\frac{p^{2}/(1 - q)^{2}}{1 + (p^{2}/(1 - q)^{2})}

= p2(1q)2+p2\frac{p^{2}}{(1 - q)^{2} + p^{2}}