Question
Mathematics Question on Complex Numbers and Quadratic Equations
If tanA and tanB are the roots of the quadratic equation, 3x2−10x−25=0, then the value of 3sin2(A+B)−10sin(A+B)?cos(A+B)−25cos2(A+B) is :
A
-10
B
10
C
-25
D
25
Answer
-25
Explanation
Solution
3x2−10x−25=0
tanA+tanB=310
tanA+tanB=−323
tan(A+B)=1tanA+tan
=1+323310
=2810=145
Divide and multiply by cos2×(A+B)
3tan2(A+B)−10tan(A+B)−25(cos2(A+B)
319625−10(145)−25(cos2(A+B))
19675−700−4500(cos2(A+B))
−1965525(1+tan2(A+B)1)
−1965525(1+196251)
=221−5521