Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If tanA\tan \, A and tanB\tan \, B are the roots of the quadratic equation, 3x210x25=03x^2 - 10x - 25 = 0, then the value of 3sin2(A+B)10sin(A+B)?cos(A+B)25cos2(A+B)3 \, \sin^2(A + B) -10 \, \sin ( A + B)?\cos(A + B)-25 \cos^2(A+B) is :

A

-10

B

10

C

-25

D

25

Answer

-25

Explanation

Solution

3x210x25=03 x^{2}-10 x-25=0
tanA+tanB=103\tan A+\tan B=\frac{10}{3}
tanA+tanB=233\tan A+\tan B=-\frac{23}{3}
tan(A+B)=tanA+tan1\tan (A+B)=\frac{\tan A+\tan }{1}
=1031+233=\frac{\frac{10}{3}}{1+\frac{23}{3}}
=1028=514=\frac{10}{28}=\frac{5}{14}
Divide and multiply by cos2×(A+B) \cos ^{2} \times( A + B )
3tan2(A+B)10tan(A+B)25(cos2(A+B)3 \tan ^{2}(A+B)-10 \tan (A+B)-25\left(\cos ^{2}(A+B)\right.
32519610(514)25(cos2(A+B))3 \frac{25}{196}-10\left(\frac{5}{14}\right)-25\left(\cos ^{2}(A+B)\right)
757004500196(cos2(A+B))\frac{75-700-4500}{196}\left(\cos ^{2}(A+B)\right)
5525196(11+tan2(A+B))-\frac{5525}{196}\left(\frac{1}{1+\tan ^{2}( A + B )}\right)
5525196(11+25196)-\frac{5525}{196}\left(\frac{1}{1+\frac{25}{196}}\right)
=5521221=\frac{-5521}{221}