Solveeit Logo

Question

Question: If \(\tan A = 2\tan B + \cot B,\) then \(2\tan(A - B) =\)...

If tanA=2tanB+cotB,\tan A = 2\tan B + \cot B, then 2tan(AB)=2\tan(A - B) =

A

tanB\tan B

B

2tanB2\tan B

C

cotB\cot B

D

2cotB2\cot B

Answer

cotB\cot B

Explanation

Solution

2tan(AB)=2(tanAtanB1+tanAtanB)2\tan(A - B) = 2\left( \frac{\tan A - \tan B}{1 + \tan A\tan B} \right)

=2(2tanB+cotBtanB)1+(2tanB+cotB)tanB=2tanB+cotB2(1+tan2B)= 2\frac{(2\tan B + \cot B - \tan B)}{1 + (2\tan B + \cot B)\tan B} = 2\frac{\tan B + \cot B}{2(1 + \tan^{2}B)}

=cotB(tan2B+1)(1+tan2B)=cotB= \frac{\cot B(\tan^{2}B + 1)}{(1 + \tan^{2}B)} = \cot B.