Solveeit Logo

Question

Question: If \(\tan A = - \frac{1}{2}\)and \(\tan B = - \frac{1}{3},\) then \(A + B =\)...

If tanA=12\tan A = - \frac{1}{2}and tanB=13,\tan B = - \frac{1}{3}, then A+B=A + B =

A

π4\frac{\pi}{4}

B

3π4\frac{3\pi}{4}

C

5π4\frac{5\pi}{4}

D

None of these

Answer

3π4\frac{3\pi}{4}

Explanation

Solution

We have tanA=12\tan A = - \frac{1}{2} and tanB=13\tan B = - \frac{1}{3}

Now, tan(A+B)=tanA+tanB1tanAtanB=1213112.13=1\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A\tan B} = \frac{- \frac{1}{2} - \frac{1}{3}}{1 - \frac{1}{2}.\frac{1}{3}} = - 1

tan(A+B)=tan3π4.\Rightarrow \tan(A + B) = \tan\frac{3\pi}{4}. Hence, A+B=3π4.A + B = \frac{3\pi}{4}.