Solveeit Logo

Question

Question: If, \(\tan 9{}^\circ =\dfrac{x}{y}\) then, value of \(\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2...

If, tan9=xy\tan 9{}^\circ =\dfrac{x}{y} then, value of sec2811+cot281\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ } is
(A). x3y3\dfrac{{{x}^{3}}}{{{y}^{3}}}
(B). x4y4\dfrac{{{x}^{4}}}{{{y}^{4}}}
(C). x5y5\dfrac{{{x}^{5}}}{{{y}^{5}}}
(D). y2x2\dfrac{{{y}^{2}}}{{{x}^{2}}}

Explanation

Solution

Hint: Take sec2811+cot281\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }, use 1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta . After that, use 1sinθ=cscθ\dfrac{1}{\sin \theta }=\csc \theta and 1cosθ=secθ\dfrac{1}{\cos \theta }=\sec \theta .
Simplify it and use cot(90θ)=tanθ\cot (90{}^\circ -\theta )=\tan \theta . Try it, you will get the answer.

Complete step-by-step answer:

In question it is given that tan9=xy\tan 9{}^\circ =\dfrac{x}{y} and we have to find the value of sec2811+cot281\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }.
We know that, 1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta ,
Now taking sec2811+cot281=sec281csc281\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ }
We know that, 1sinθ=cscθ\dfrac{1}{\sin \theta }=\csc \theta and 1cosθ=secθ\dfrac{1}{\cos \theta }=\sec \theta .
So we get,
sec2811+cot281=sec281csc281 sec2811+cot281=1cos2811sin281 \begin{aligned} & \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\sec }^{2}}81{}^\circ }{{{\csc }^{2}}81{}^\circ } \\\ & \Rightarrow \dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }} \\\ \end{aligned}
Simplifying we get,
sec2811+cot281=1cos2811sin281=sin281cos281\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}81{}^\circ }}{\dfrac{1}{{{\sin }^{2}}81{}^\circ }}=\dfrac{{{\sin }^{2}}81{}^\circ }{{{\cos }^{2}}81{}^\circ }
We know sin(90θ)=cosθ,cos(90θ)=sinθ\sin (90{}^\circ -\theta )=cos\theta ,cos(90{}^\circ -\theta )=sin\theta , so above equation can be written as,
sec2811+cot281=[sin(909)]2[cos(909)]2=cos29sin29=cot29\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{{{\left[ \sin (90{}^\circ -9{}^\circ )\right]}^{2}}}{{{\left[ \cos (90{}^\circ -9{}^\circ ) \right]}^{2}}}=\dfrac{{{\cos }^{2}}9{}^\circ }{{{\sin}^{2}}9{}^\circ }={\cot}^2 9{}^\circ

Here, tan9=xy\tan 9{}^\circ =\dfrac{x}{y},
so substituting above we get,
sec2811+cot281=(1tan9)2=(yx)2=y2x2\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }={{\left( \dfrac{1}{\tan 9{}^\circ } \right)}^{2}}={{\left( \dfrac{y}{x} \right)}^{2}}=\dfrac{{{y}^{2}}}{{{x}^{2}}}
Hence, the value of sec2811+cot281\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ } is y2x2\dfrac{{{y}^{2}}}{{{x}^{2}}}.
The correct answer is option(D).

Note: Read the question carefully. You should be thorough with the concept of trigonometry. While simplifying, do not miss any term. Don’t make silly mistakes. You should know the identities such as 1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta , cot(90θ)=tanθ\cot (90{}^\circ -\theta )=\tan \theta , 1sinθ=cscθ\dfrac{1}{\sin \theta }=\csc \theta etc. These all properties are used in the above problem.
Another approach is directly converting the given expression in terms of 99{}^\circ then simplify.
sec2811+cot281=1cos2(909)1+cot2(909)=1sin2(9)1+tan2(9)=csc2(9)1+tan2(9)\dfrac{{{\sec }^{2}}81{}^\circ }{1+{{\cot }^{2}}81{}^\circ }=\dfrac{\dfrac{1}{{{\cos }^{2}}(90{}^\circ -9{}^\circ )}}{1+{{\cot }^{2}}(90{}^\circ -9{}^\circ )}=\dfrac{\dfrac{1}{si{{n}^{2}}(9{}^\circ )}}{1+{{\tan }^{2}}(9{}^\circ )}=\dfrac{cs{{c}^{2}}(9{}^\circ )}{1+{{\tan }^{2}}(9{}^\circ )}
In this method, you will get the same answer, but it will be tedious.