Solveeit Logo

Question

Question: If \[\tan 5x = \cot 3x\,\]then \[x = (n \in z)\]...

If tan5x=cot3x\tan 5x = \cot 3x\,then x=(nz)x = (n \in z)

Explanation

Solution

Trigonometric functions describe the relation between the sides and angles of a right triangle. ... The trigonometric functions include the following 6 functions: sine, cosine, tangent, cotangent, secant, and cosecant. For each of these functions, there is an inverse trigonometric function.
Always convert All the Trigonometric Function into the same function.
As to convert tanx\tan x into cotx\cot x the following ways are :
cotx=tan(π2y)\cot x = \tan (\dfrac{\pi }{2} - y)
Formula for tanθ=tanα\tan \theta = \tan \alpha this is the solution.
θ=nπ+α\Rightarrow \theta = n\pi + \alpha

Complete step-by- step solution:
Given tan5x=cot3x\tan 5x = \cot 3x
Changing the cotθcot\theta into tanθtan\theta by writing cotθcot\theta = tanθtan\theta
Where θ=3x\theta = 3x
tan5x=tan(π23x)\tan 5x = \tan (\dfrac{\pi }{2} - 3x)
For General formula of tan x,tan{\text{ }}x, when tanθ=tan αtan\theta = tan{\text{ }}\alpha
Then, θ=nπ +α\theta = n\pi {\text{ }} + \alpha
\Rightarrow$$$5x = n\pi + \dfrac{\pi }{2} - 3x$$ Now on shifting $$\pi /2$$ on right side we get \Rightarrow5x + 3x = n\pi + \dfrac{\pi }{2}$$ $\Rightarrow8x = n\pi + \dfrac{\pi }{2} Now on taking L.CM for the above term where L.C.M = 2 we get $\Rightarrow$$$8x = \dfrac{{2n\pi + \pi }}{2}
Transposing 2 to left side and multiply with 8 we get
\Rightarrow$$$8x \times 2 = 2n\pi + \pi $$ \Rightarrow16x = 2n\pi + \pi $$ Transposing 16 on right side as denominator $\Rightarrowx = \dfrac{1}{{16}}(2\pi n + \pi )HenceRequiredvalueof Hence Required value ofx = \dfrac{1}{{16}}(2n\pi + \pi )Or Orx = \dfrac{\pi }{{16}}(2n + 1)[Taking[Taking\pi $$ common]

Note: Explanation for General solution of \tan \theta $$$$ = \tan \alpha is given by θ=nπ+α,nz\theta = n\pi + \alpha ,\,n \in z.
As follows,
tanθ=tanα\tan \theta = \tan \alpha
We know tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
\Rightarrow sinθcosθ=sinαcosα\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}
Taking sinαcosα\dfrac{{\sin \alpha }}{{\cos \alpha }} to L.H.S we get
\Rightarrow sinθcosθsinαcosα=0\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\sin \alpha }}{{\cos \alpha }} = 0
On taking taking LCM we get
\Rightarrow$$$\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0$$ \Rightarrow\therefore \cos \theta \cos \alpha \times 0 = 0$$ $\Rightarrow\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0Identity: Identity:\sin \theta \cos \alpha - \sin \alpha \cos \theta , ,\sin (\theta - \alpha ) \sin (\theta - \alpha ) = 0 \Rightarrow \theta - \alpha = n\pi ,where, where n \in zi.e.i.e.(n = 0, \pm 1, \pm 2, \pm 3.....).(sinceweknowthat. (since we know that \theta = n\pi ,n \in zisthegeneralsolutionofthegivenequationis the general solution of the given equation\sin \theta = 0).). \Rightarrow \theta = n\pi + \alpha ,wherewheren \in z(i.e.(i.e.n = 0,,, \pm 1,,,, \pm 2,,, \pm 3).$$