Question
Question: If \[\tan 5x = \cot 3x\,\]then \[x = (n \in z)\]...
If tan5x=cot3xthen x=(n∈z)
Solution
Trigonometric functions describe the relation between the sides and angles of a right triangle. ... The trigonometric functions include the following 6 functions: sine, cosine, tangent, cotangent, secant, and cosecant. For each of these functions, there is an inverse trigonometric function.
Always convert All the Trigonometric Function into the same function.
As to convert tanx into cotx the following ways are :
cotx=tan(2π−y)
Formula for tanθ=tanα this is the solution.
⇒θ=nπ+α
Complete step-by- step solution:
Given tan5x=cot3x
Changing the cotθinto tanθ by writing cotθ= tanθ
Where θ=3x
tan5x=tan(2π−3x)
For General formula of tan x, when tanθ=tan α
Then, θ=nπ +α
\Rightarrow$$$5x = n\pi + \dfrac{\pi }{2} - 3x$$
Now on shifting $$\pi /2$$ on right side we get
\Rightarrow5x + 3x = n\pi + \dfrac{\pi }{2}$$
$\Rightarrow8x = n\pi + \dfrac{\pi }{2}
Now on taking L.CM for the above term where L.C.M = 2 we get
$\Rightarrow$$$8x = \dfrac{{2n\pi + \pi }}{2}
Transposing 2 to left side and multiply with 8 we get
\Rightarrow$$$8x \times 2 = 2n\pi + \pi $$
\Rightarrow16x = 2n\pi + \pi $$
Transposing 16 on right side as denominator
$\Rightarrowx = \dfrac{1}{{16}}(2\pi n + \pi )HenceRequiredvalueofx = \dfrac{1}{{16}}(2n\pi + \pi )Orx = \dfrac{\pi }{{16}}(2n + 1)[Taking\pi $$ common]
Note: Explanation for General solution of \tan \theta $$$$ = \tan \alpha is given by θ=nπ+α,n∈z.
As follows,
tanθ=tanα
We know tanθ=cosθsinθ
⇒ cosθsinθ=cosαsinα
Taking cosαsinα to L.H.S we get
⇒ cosθsinθ−cosαsinα=0
On taking taking LCM we get
\Rightarrow$$$\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0$$
\Rightarrow\therefore \cos \theta \cos \alpha \times 0 = 0$$
$\Rightarrow\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0Identity:\sin \theta \cos \alpha - \sin \alpha \cos \theta ,\sin (\theta - \alpha )\sin (\theta - \alpha ) = 0 \Rightarrow \theta - \alpha = n\pi ,wheren \in zi.e.(n = 0, \pm 1, \pm 2, \pm 3.....).(sinceweknowthat\theta = n\pi ,n \in zisthegeneralsolutionofthegivenequation\sin \theta = 0). \Rightarrow \theta = n\pi + \alpha ,wheren \in z(i.e.n = 0,,, \pm 1,,,, \pm 2,,, \pm 3).$$