Question
Mathematics Question on Introduction to Trigonometry
If tan3θ−1tan3θ+1=3, then the general value of θ is:
A
nπ3−π12,n∈Z
B
nπ+7π12,n∈Z
C
nπ3+7π36,n∈Z
D
nπ+π12,n∈Z
Answer
nπ3+7π36,n∈Z
Explanation
Solution
Explanation:
Given: tan3θ−1tan3θ+1=3
We have to find the general value of θ.
Consider, tan3θ−1tan3θ+1=3⇒tan3θ−tanπ41+tan3θ⋅tanπ4=3[Using trigonometric ratios ]
⇒tan(3θ−π4)=tanπ3[Using trigonometric formula of tangent function ]⇒3θ−π4=nπ+π3,n∈Z[Using general solution of tangent function]⇒3θ=nπ+π3+π4,n∈Z⇒3θ=nπ+4π+3π12,n∈Z⇒θ=nπ3+7π36,n∈Z
Hence, the correct option is (C).