Question
Question: If \(\tan 25{}^\circ =x\) , prove that \(\dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\c...
If tan25∘=x , prove that 1+tan155∘tan115∘tan155∘−tan115∘=2x1−x2 .
Solution
To prove 1+tan155∘tan115∘tan155∘−tan115∘=2x1−x2 , we have to consider the LHS. We have to change the angles in such a way that 25∘ will be included, that is, we have to write 155∘=(180∘−25∘) and 115∘=(90∘+25∘) . We have to substitute these in the LHS and apply the trigonometric rules tan(180∘−θ)=−tanθ and tan(90∘+θ)=−cotθ . Then, we have to use the given condition and simplify.
Complete step by step solution:
We have to prove 1+tan155∘tan115∘tan155∘−tan115∘=2x1−x2 . Let us consider the LHS.
⇒LHS=1+tan155∘tan115∘tan155∘−tan115∘
We know that 155∘=(180∘−25∘) and 115∘=(90∘+25∘) . Hence, we can write the LHS as
⇒1+tan155∘tan115∘tan155∘−tan115∘=1+tan(180∘−25∘)tan(90∘+25∘)tan(180∘−25∘)−tan(90∘+25∘)
We know that tan(180∘−θ)=−tanθ and tan(90∘+θ)=−cotθ . Therefore, the above equation becomes