Solveeit Logo

Question

Question: If \(\tan 25{}^\circ =x\) , prove that \(\dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\c...

If tan25=x\tan 25{}^\circ =x , prove that tan155tan1151+tan155tan115=1x22x\dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{1-{{x}^{2}}}{2x} .

Explanation

Solution

To prove tan155tan1151+tan155tan115=1x22x\dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{1-{{x}^{2}}}{2x} , we have to consider the LHS. We have to change the angles in such a way that 2525{}^\circ will be included, that is, we have to write 155=(18025)155{}^\circ =\left( 180{}^\circ -25{}^\circ \right) and 115=(90+25)115{}^\circ =\left( 90{}^\circ +25{}^\circ \right) . We have to substitute these in the LHS and apply the trigonometric rules tan(180θ)=tanθ\tan \left( 180{}^\circ -\theta \right)=-\tan \theta and tan(90+θ)=cotθ\tan \left( 90{}^\circ +\theta \right)=-\cot \theta . Then, we have to use the given condition and simplify.

Complete step by step solution:
We have to prove tan155tan1151+tan155tan115=1x22x\dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{1-{{x}^{2}}}{2x} . Let us consider the LHS.
LHS=tan155tan1151+tan155tan115\Rightarrow LHS=\dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }
We know that 155=(18025)155{}^\circ =\left( 180{}^\circ -25{}^\circ \right) and 115=(90+25)115{}^\circ =\left( 90{}^\circ +25{}^\circ \right) . Hence, we can write the LHS as
tan155tan1151+tan155tan115=tan(18025)tan(90+25)1+tan(18025)tan(90+25)\Rightarrow \dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{\tan \left( 180{}^\circ -25{}^\circ \right)-\tan \left( 90{}^\circ +25{}^\circ \right)}{1+\tan \left( 180{}^\circ -25{}^\circ \right)\tan \left( 90{}^\circ +25{}^\circ \right)}
We know that tan(180θ)=tanθ\tan \left( 180{}^\circ -\theta \right)=-\tan \theta and tan(90+θ)=cotθ\tan \left( 90{}^\circ +\theta \right)=-\cot \theta . Therefore, the above equation becomes

& \Rightarrow \dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{-\tan 25{}^\circ -\left( -\cot 25{}^\circ \right)}{1-\tan 25{}^\circ \times -\cot 25{}^\circ } \\\ & \Rightarrow \dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{-\tan 25{}^\circ +\cot 25{}^\circ }{1+\tan 25{}^\circ \cot 25{}^\circ }...\left( i \right) \\\ \end{aligned}$$ We are given that $\tan 25{}^\circ =x...\left( ii \right)$ . We know that $\cot \theta =\dfrac{1}{\tan \theta }$ . Therefore, we can find $\cot 25{}^\circ $ as $\cot 25{}^\circ =\dfrac{1}{\tan 25{}^\circ }=\dfrac{1}{x}...\left( iii \right)$ Let us substitute (ii) and (iii) in (i). $$\Rightarrow \dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{-x+\dfrac{1}{x}}{1+x\times \dfrac{1}{x}}$$ Let us take the LCM and solve. $$\begin{aligned} & \Rightarrow \dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{\dfrac{-{{x}^{2}}+1}{x}}{1+1} \\\ & \Rightarrow \dfrac{\tan 155{}^\circ -\tan 115{}^\circ }{1+\tan 155{}^\circ \tan 115{}^\circ }=\dfrac{1-{{x}^{2}}}{2x}=RHS \\\ \end{aligned}$$ We can see that LHS = RHS. Hence proved. **Note:** Students must know the trigonometric formulas and rules to solve these problems. They must know that all the trigonometric functions are positive in the angle $\left( 90{}^\circ -\theta \right)$ and the function changes. If the function was sin, it would be cos and vise-versa, tan to cot and vise-versa, cosec to sec and vise-versa. Only sine and cosec will be positive when the angle is $\left( 90{}^\circ +\theta \right)$ or $\left( 180{}^\circ -\theta \right)$ . When the angle is $\left( 90{}^\circ +\theta \right)$ , the sine function changes to cosine and cosine function to sine (with a negative sign as cosine is negative in this angle). The cosec function changes to sec at this angle and sec changes to cosec by with a negative sign. Only tangent and cotangent functions will be positive when angle is $\left( 180{}^\circ +\theta \right)$ or $\left( 270{}^\circ -\theta \right)$ . The function tan changes to cot and vise-versa when the angle is $\left( 270{}^\circ -\theta \right)$ . When the angle is $\left( 270{}^\circ +\theta \right)$ or $\left( 360{}^\circ -\theta \right)$ , cos and sec functions are positive. The function cos changes to sin at the angle $\left( 270{}^\circ +\theta \right)$ and also sec changes to cosec. The given figure describes this. ![](https://www.vedantu.com/question-sets/dbfa8f09-f7ba-400e-939a-fca1f657b036828476240146484126.png)