Solveeit Logo

Question

Question: If \(\tan {{25}^{\circ }}=x\), prove that \(\dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\t...

If tan25=x\tan {{25}^{\circ }}=x, prove that tan155tan1151+tan155tan115=1x22x\dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x}.

Explanation

Solution

To prove the given equation, we are going to write the L.H.S in the expression in x and then prove that both the sides are equal. This conversion is going to be achieved by writing tan155=tan(18025)\tan {{155}^{\circ }}=\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right) and writing tan115=tan(90+25)\tan {{115}^{\circ }}=\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right) in the L.H.S of the given equation. There are trigonometric conversions which states that: tan(180θ)=tanθ\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta and tan(90+θ)=cotθ\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta . These conversions we are going to use the L.H.S and hence, will prove the given equation.

Complete step by step answer:
The equation given in the above problem which we are asked to prove is as follows:
tan155tan1151+tan155tan115=1x22x\dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x}
We have also given that: tan25=x\tan {{25}^{\circ }}=x so using this relation we are going to make the L.H.S equal to R.H.S.
We can write tan155=tan(18025)\tan {{155}^{\circ }}=\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right) and tan115=tan(90+25)\tan {{115}^{\circ }}=\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right) in the L.H.S of the given equation and we get,
tan155tan1151+tan155tan115=1x22x tan(18025)tan(90+25)1+tan(18025)tan(90+25)=1x22x \begin{aligned} & \dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x} \\\ & \Rightarrow \dfrac{\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)-\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)}{1+\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)}=\dfrac{1-{{x}^{2}}}{2x} \\\ \end{aligned}
We know the trigonometric conversions which states that:
tan(180θ)=tanθ\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta and tan(90+θ)=cotθ\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta
Substituting θ=25\theta ={{25}^{\circ }} in the above equations we get,
tan(18025)=tan25\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)=-\tan {{25}^{\circ }} and tan(90+25)=cot25\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)=-\cot {{25}^{\circ }}
Using the above equations in the given equation we get,
tan(25)+cot(25)1+tan(25)cot(25)=1x22x\dfrac{-\tan \left( {{25}^{\circ }} \right)+\cot \left( {{25}^{\circ }} \right)}{1+\tan \left( {{25}^{\circ }} \right)\cot \left( {{25}^{\circ }} \right)}=\dfrac{1-{{x}^{2}}}{2x}
Now, we know that cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } using this relation in the above equation we get,
tan(25)+1tan251+tan(25)(1tan25)=1x22x\dfrac{-\tan \left( {{25}^{\circ }} \right)+\dfrac{1}{\tan {{25}^{\circ }}}}{1+\tan \left( {{25}^{\circ }} \right)\left( \dfrac{1}{\tan {{25}^{\circ }}} \right)}=\dfrac{1-{{x}^{2}}}{2x}
In the denominator of the L.H.S of the above equation, tan25\tan {{25}^{\circ }} will get cancelled out from the numerator and the denominator and we get,
tan(25)+1tan251+1=1x22x\dfrac{-\tan \left( {{25}^{\circ }} \right)+\dfrac{1}{\tan {{25}^{\circ }}}}{1+1}=\dfrac{1-{{x}^{2}}}{2x}
Substituting tan25=x\tan {{25}^{\circ }}=x in the L.H.S of the above equation we get,
x+1x2=1x22x\dfrac{-x+\dfrac{1}{x}}{2}=\dfrac{1-{{x}^{2}}}{2x}
Now, taking xx as L.C.M in the L.H.S of the above equation we get,
x(x)+12x=1x22x x2+12x=1x22x \begin{aligned} & \dfrac{-x\left( x \right)+1}{2x}=\dfrac{1-{{x}^{2}}}{2x} \\\ & \Rightarrow \dfrac{-{{x}^{2}}+1}{2x}=\dfrac{1-{{x}^{2}}}{2x} \\\ \end{aligned}
Rearranging L.H.S of the above equation we get,
1x22x=1x22x\dfrac{1-{{x}^{2}}}{2x}=\dfrac{1-{{x}^{2}}}{2x}
As you can see that L.H.S is equal to R.H.S so we have verified the given equation.

Note: The mistake that could be possible in the above problem is that while writing the trigonometric conversions, you might forget to write the negative sign after the conversions.
tan(180θ)=tanθ\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta and tan(90+θ)=cotθ\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta
There is a negative sign you can see in the above conversions so there is a trick and on using that you will not forget the negative sign and the trick is as you can see that the angles written inside tan\tan lies in the second quadrant and in the second quadrant tan\tan is negative.