Question
Question: If \[\tan {{20}^{\circ }}=\lambda \], then show that \[\dfrac{\tan {{160}^{\circ }}-\tan {{110}^{\ci...
If tan20∘=λ, then show that 1+tan160∘.tan110∘tan160∘−tan110∘=2λ1−λ2.
Explanation
Solution
Hint: Find the value of tan160∘ & tan110∘ in terms of tan20∘ using the trigonometric functions tan(180−θ) and tan(90+θ). Replace the values in L.H.S of the expression, put tan20∘=λ and simplify it.
Complete step-by-step answer:
We are given the tangent function, tan20∘=λ.
We need to show that,
⇒1+tan160∘.tan110∘tan160∘−tan110∘=2λ1−λ2
We know the basic trigonometric function such as,
⇒tan(180−θ)=−tanθ
Similarly, tan(90+θ)=−cotθ.
Hence we can change the expression, tan160∘ and tan110∘.
tan160∘ can be written as, tan(180−20∘).
i.e. tan160∘ = tan(180∘−20∘)=−tan20∘.
Similarly tan110∘ can be written as tan(90∘+20∘).
i.e. tan110∘ = tan(90∘+20∘) = −cot20∘
There we can say that,