Solveeit Logo

Question

Question: If \({{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x\) then prove that the value of L.H....

If tan2x+2tanxtan2y=tan2y+2tanytan2x{{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x then prove that the value of L.H.S and R.H.S is equal to 1 and tanx=±tany\tan x=\pm \tan y ?

Explanation

Solution

Let us assume the given equation is equal to k then take one by one L.H.S and R.H.S and equate them equal to k and simplify the equations. Then two equations will be formed which will look like: tan2x+2tanxtan2y=k;tan2y+2tanytan2x=k{{\tan }^{2}}x+2\tan x\tan 2y=k;{{\tan }^{2}}y+2\tan y\tan 2x=k. To simplify these two equations, we are going to use the tangent trigonometry identity which is equal to tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }.

Complete step by step solution:
In the above problem, we have given the following equation:
tan2x+2tanxtan2y=tan2y+2tanytan2x{{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x
Let us equate the above equation to k and we get,
tan2x+2tanxtan2y=tan2y+2tanytan2x=k\Rightarrow {{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x=k
Now, solving the above equations we get,
tan2x+2tanxtan2y=k; tan2y+2tanytan2x=k \begin{aligned} & {{\tan }^{2}}x+2\tan x\tan 2y=k; \\\ & {{\tan }^{2}}y+2\tan y\tan 2x=k \\\ \end{aligned}
First of all, we are solving the first equation from the above two equations and we get,
tan2x+2tanxtan2y=k\Rightarrow {{\tan }^{2}}x+2\tan x\tan 2y=k
Subtracting tan2x{{\tan }^{2}}x on both the sides we get,
2tanxtan2y=ktan2x\Rightarrow 2\tan x\tan 2y=k-{{\tan }^{2}}x
Dividing 2tanx2\tan x on both the sides of the above equation and we get,
tan2y=ktan2x2tanx\Rightarrow \tan 2y=\dfrac{k-{{\tan }^{2}}x}{2\tan x}
We know that there is a trigonometry identity which states that:
tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }
Applying the above property in the L.H.S of the above equation and we get,
2tany1tan2y=ktan2x2tanx\Rightarrow \dfrac{2\tan y}{1-{{\tan }^{2}}y}=\dfrac{k-{{\tan }^{2}}x}{2\tan x}
Cross multiplying the above equation we get,
4tanxtany=(ktan2x)(1tan2y)\Rightarrow 4\tan x\tan y=\left( k-{{\tan }^{2}}x \right)\left( 1-{{\tan }^{2}}y \right) …………. (1)
Similarly, we are going to equate k with R.H.S of the main equation and we get,
tan2y+2tanytan2x=k\Rightarrow {{\tan }^{2}}y+2\tan y\tan 2x=k
Subtracting tan2y{{\tan }^{2}}y on both the sides we get,
2tanytan2x=ktan2y\Rightarrow 2\tan y\tan 2x=k-{{\tan }^{2}}y
Dividing 2tany2\tan y on both the sides of the above equation and we get,
tan2x=ktan2y2tany\Rightarrow \tan 2x=\dfrac{k-{{\tan }^{2}}y}{2\tan y}
We know that there is a trigonometry identity which states that:
tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }
Applying the above property in the L.H.S of the above equation and we get,
2tanx1tan2x=ktan2y2tany\Rightarrow \dfrac{2\tan x}{1-{{\tan }^{2}}x}=\dfrac{k-{{\tan }^{2}}y}{2\tan y}
Cross multiplying the above equation we get,
4tanxtany=(ktan2y)(1tan2x)\Rightarrow 4\tan x\tan y=\left( k-{{\tan }^{2}}y \right)\left( 1-{{\tan }^{2}}x \right) …………. (2)
From eq. (1) and eq. (2) we get,
(ktan2x)(1tan2y)=(ktan2y)(1tan2x)\Rightarrow \left( k-{{\tan }^{2}}x \right)\left( 1-{{\tan }^{2}}y \right)=\left( k-{{\tan }^{2}}y \right)\left( 1-{{\tan }^{2}}x \right)
Solving the L.H.S and R.H.S of the above equation and we get,
k+tan2xtan2yktan2ytan2x=k+tan2xtan2yktan2xtan2y\Rightarrow k+{{\tan }^{2}}x{{\tan }^{2}}y-k{{\tan }^{2}}y-{{\tan }^{2}}x=k+{{\tan }^{2}}x{{\tan }^{2}}y-k{{\tan }^{2}}x-{{\tan }^{2}}y
In the above equation, k&tan2xtan2yk\And {{\tan }^{2}}x{{\tan }^{2}}y will be cancelled out from both the sides and we get,
ktan2ytan2x=ktan2xtan2y\Rightarrow -k{{\tan }^{2}}y-{{\tan }^{2}}x=-k{{\tan }^{2}}x-{{\tan }^{2}}y
Rearranging the above equation and we get,
ktan2xktan2y+tan2ytan2x=0 k(tan2xtan2y)(tan2xtan2y)=0 \begin{aligned} & \Rightarrow k{{\tan }^{2}}x-k{{\tan }^{2}}y+{{\tan }^{2}}y-{{\tan }^{2}}x=0 \\\ & \Rightarrow k\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)-\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)=0 \\\ \end{aligned}
Taking (tan2xtan2y)\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right) as common from the L.H.S of the above equation and we get,
(tan2xtan2y)(k1)=0\Rightarrow \left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)\left( k-1 \right)=0
Equating each bracket to 0 we get,
k=1; tan2xtan2y=0 (tanxtany)(tanx+tany)=0 tanx=±tany \begin{aligned} & \Rightarrow k=1; \\\ & \Rightarrow {{\tan }^{2}}x-{{\tan }^{2}}y=0 \\\ & \Rightarrow \left( \tan x-\tan y \right)\left( \tan x+\tan y \right)=0 \\\ & \Rightarrow \tan x=\pm \tan y \\\ \end{aligned}

Note: To solve the above problem you must need to know the property of double angle of tangent which is equal to:
tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }
If you forget this property then you cannot move forward in this problem.