Solveeit Logo

Question

Question: If \( \tan 2\theta .\tan 4\theta = 1 \) then find the value of \( \tan 3\theta \) . A) \( \dfrac{1...

If tan2θ.tan4θ=1\tan 2\theta .\tan 4\theta = 1 then find the value of tan3θ\tan 3\theta .
A) 12\dfrac{1}{2}
B) 2
C) 0
D) 1

Explanation

Solution

This is a trigonometric question. To solve the above problem first we will take one of the terms of the above equation to the opposite side and convert it into cot form followed by tan(90θ)\tan (90^\circ - \theta ) form. After that we will compare the angles of both to get the value of θ\theta and putting that value in tan3θ\tan 3\theta we will get the answer.

Complete step-by-step answer:
It is given in the question,
tan2θ.tan4θ=1\tan 2\theta .\tan 4\theta = 1
Taking tan4θ\tan 4\theta to the right hand side of above equation we get,
tan2θ=1tan4θ\tan 2\theta = \dfrac{1}{{\tan 4\theta }}
We know that the formula of 1tanθ=cotθ\dfrac{1}{{\tan \theta }} = \cot \theta , Hence the above equation becomes
tan2θ=cot4θ\tan 2\theta = \cot 4\theta
We know that the formula cotθ=tan(90θ)\cot \theta = \tan (90^\circ - \theta ) , Hence the above equation becomes
tan2θ=tan(904θ)\tan 2\theta = \tan (90^\circ - 4\theta )
From the above equation we get that,
2θ=904θ2\theta = 90^\circ - 4\theta
Taking 4θ4\theta to the left hand side we get,
2θ+4θ=902\theta + 4\theta = 90^\circ
Simplifying the above equation we get,
6θ=906\theta = 90^\circ
θ=906=15\Rightarrow \theta = \dfrac{{90^\circ }}{6} = 15^\circ
\therefore 3θ=3×15=453\theta = 3 \times 15^\circ = 45^\circ
Hence, tan3θ=tan45=1\tan 3\theta = \tan 45^\circ = 1

Option D is correct.

Note: There is an alternative method.
We know that if tanA.tanB=1\tan A.\tan B = 1 , then A+B=90A + B = 90^\circ
We are given in the question that,
tan2θ.tan4θ=1\tan 2\theta .\tan 4\theta = 1
Hence, (2θ+4θ)=90(2\theta + 4\theta ) = 90^\circ
Simplifying it we get,
6θ=906\theta = 90^\circ
θ=906=15\Rightarrow \theta = \dfrac{{90^\circ }}{6} = 15^\circ
\therefore 3θ=3×15=453\theta = 3 \times 15^\circ = 45^\circ
Hence, tan3θ=tan45=1\tan 3\theta = \tan 45^\circ = 1 .
If you are getting confuse about the formula if tanA.tanB=1\tan A.\tan B = 1 , then A+B=90A + B = 90^\circ
Then we can prove it backward.
Let A+B=90A + B = 90^\circ
Taking tan on both side we get,
tan(A+B)=tan90\tan (A + B) = \tan 90^\circ
Putting the formula we get,
tanA+tanB1tanA.tanB=tan90\dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}} = \tan 90^\circ
Putting the value of tan90\tan 90^\circ we get,
tanA+tanB1tanA.tanB=10\dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}} = \dfrac{1}{0} (As actual value of tan90=10\tan 90^\circ = \dfrac{1}{0} )
By cross multiplication we get,
1tanA.tanB=01 - \tan A.\tan B = 0
tanA.tanB=1\tan A.\tan B = 1
Hence proved.
Trigonometry is the type of mathematics that deals with the relationship between the sides and the angles of triangles.