Question
Question: If \({\tan ^2}\theta + \sec \theta = 5\) , find \(\cos \theta \) ....
If tan2θ+secθ=5 , find cosθ .
Solution
Firstly, use tan2θ=sec2θ−1 . After that, a quadratic equation will be formed. By solving that quadratic equation, using the method of splitting the middle term, we will get max. two values of secθ . And by taking the reciprocal of secθ , we will get the value of cosθ .
Complete step-by-step answer:
We have
tan2θ+secθ=5
We know that, tan2θ=sec2θ−1
∴sec2θ−1+secθ−5=0 ∴sec2θ+secθ−6=0
Now, on splitting the middle term secθ as 3secθ−2secθ we get,
sec2θ+3secθ−2secθ−6=0 ∴secθ(secθ+3)−2(secθ+3)=0 ∴(secθ+3)(secθ−2)=0
∴secθ+3=0 or secθ−2=0
∴secθ=−3 or secθ=2
∴cosθ1=−3 or cosθ1=2
∴cosθ=3−1 or cosθ=21
Thus, cosθ=3−1 or cosθ=21 .
Note: Alternate Method:
We have
tan2θ+secθ=5
We know that, tan2θ=sec2θ−1
∴sec2θ−1+secθ−5=0 ∴sec2θ+secθ−6=0
Now, from the above equation, a=1 , b=1 and c=−6 .
∴Δ=b2−4ac
=12−4(1)(−6) =1+24 =25 =5
So, the roots of the equation are secθ=2a−b±Δ .
∴secθ=2a−b+Δ or secθ=2a−b−Δ
∴secθ=2−1+5 or secθ=2−1−5
∴secθ=24 or secθ=2−6
∴secθ=2 or secθ=−3
∴cosθ1=2 or cosθ1=−3
∴cosθ=21 or cosθ=3−1
Thus, cosθ=3−1 or cosθ=21 .