Solveeit Logo

Question

Question: If \({\tan ^2}\theta + \sec \theta = 5\) , find \(\cos \theta \) ....

If tan2θ+secθ=5{\tan ^2}\theta + \sec \theta = 5 , find cosθ\cos \theta .

Explanation

Solution

Firstly, use tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1 . After that, a quadratic equation will be formed. By solving that quadratic equation, using the method of splitting the middle term, we will get max. two values of secθ\sec \theta . And by taking the reciprocal of secθ\sec \theta , we will get the value of cosθ\cos \theta .

Complete step-by-step answer:
We have
tan2θ+secθ=5{\tan ^2}\theta + \sec \theta = 5
We know that, tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1
sec2θ1+secθ5=0 sec2θ+secθ6=0  \therefore {\sec ^2}\theta - 1 + \sec \theta - 5 = 0 \\\ \therefore {\sec ^2}\theta + \sec \theta - 6 = 0 \\\
Now, on splitting the middle term secθ\sec \theta as 3secθ2secθ3\sec \theta - 2\sec \theta we get,
sec2θ+3secθ2secθ6=0 secθ(secθ+3)2(secθ+3)=0 (secθ+3)(secθ2)=0  {\sec ^2}\theta + 3\sec \theta - 2\sec \theta - 6 = 0 \\\ \therefore \sec \theta \left( {\sec \theta + 3} \right) - 2\left( {\sec \theta + 3} \right) = 0 \\\ \therefore \left( {\sec \theta + 3} \right)\left( {\sec \theta - 2} \right) = 0 \\\
secθ+3=0\therefore \sec \theta + 3 = 0 or secθ2=0\sec \theta - 2 = 0
secθ=3\therefore \sec \theta = - 3 or secθ=2\sec \theta = 2
1cosθ=3\therefore \dfrac{1}{{\cos \theta }} = - 3 or 1cosθ=2\dfrac{1}{{\cos \theta }} = 2
cosθ=13\therefore \cos \theta = \dfrac{{ - 1}}{3} or cosθ=12\cos \theta = \dfrac{1}{2}
Thus, cosθ=13\cos \theta = \dfrac{{ - 1}}{3} or cosθ=12\cos \theta = \dfrac{1}{2} .

Note: Alternate Method:
We have
tan2θ+secθ=5{\tan ^2}\theta + \sec \theta = 5
We know that, tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1
sec2θ1+secθ5=0 sec2θ+secθ6=0  \therefore {\sec ^2}\theta - 1 + \sec \theta - 5 = 0 \\\ \therefore {\sec ^2}\theta + \sec \theta - 6 = 0 \\\
Now, from the above equation, a=1a = 1 , b=1b = 1 and c=6c = - 6 .
Δ=b24ac\therefore \Delta = \sqrt {{b^2} - 4ac}
=124(1)(6) =1+24 =25 =5  = \sqrt {{1^2} - 4\left( 1 \right)\left( { - 6} \right)} \\\ = \sqrt {1 + 24} \\\ = \sqrt {25} \\\ = 5 \\\
So, the roots of the equation are secθ=b±Δ2a\sec \theta = \dfrac{{ - b \pm \Delta }}{{2a}} .
secθ=b+Δ2a\therefore \sec \theta = \dfrac{{ - b + \Delta }}{{2a}} or secθ=bΔ2a\sec \theta = \dfrac{{ - b - \Delta }}{{2a}}
secθ=1+52\therefore \sec \theta = \dfrac{{ - 1 + 5}}{2} or secθ=152\sec \theta = \dfrac{{ - 1 - 5}}{2}
secθ=42\therefore \sec \theta = \dfrac{4}{2} or secθ=62\sec \theta = \dfrac{{ - 6}}{2}
secθ=2\therefore \sec \theta = 2 or secθ=3\sec \theta = - 3
1cosθ=2\therefore \dfrac{1}{{\cos \theta }} = 2 or 1cosθ=3\dfrac{1}{{\cos \theta }} = - 3
cosθ=12\therefore \cos \theta = \dfrac{1}{2} or cosθ=13\cos \theta = \dfrac{{ - 1}}{3}
Thus, cosθ=13\cos \theta = \dfrac{{ - 1}}{3} or cosθ=12\cos \theta = \dfrac{1}{2} .