Solveeit Logo

Question

Question: If \({\tan ^2}\theta = 1 - {a^2}\) ,prove that \(\sec \theta + {\tan ^3}\theta \cos ec\theta = {\lef...

If tan2θ=1a2{\tan ^2}\theta = 1 - {a^2} ,prove that secθ+tan3θcosecθ=(2a2)32\sec \theta + {\tan ^3}\theta \cos ec\theta = {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}}

Explanation

Solution

Considering the left hand side , first taking secθ\sec \theta common and replacingsecθ=1cosθ and cosecθ=1sinθ\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cos ec\theta = \dfrac{1}{{\sin \theta }} we get an equation in which we can further replace tan3θ=sin3θcos3θ{\tan ^3}\theta = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }} and then by using the identity sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1 we can find the value of secθ\sec \theta . And using the given statement tan2θ=1a2{\tan ^2}\theta = 1 - {a^2} we get our right hand side.

Complete step by step solution:
Here we are give that tan2θ=1a2{\tan ^2}\theta = 1 - {a^2}……….(1)
We are asked to prove secθ+tan3θcosecθ=(2a2)32\sec \theta + {\tan ^3}\theta \cos ec\theta = {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}}
So now lets start with our left hand side
secθ+tan3θcosecθ\Rightarrow \sec \theta + {\tan ^3}\theta \cos ec\theta
At first lets multiply and divide by secθ\sec \theta
secθsecθ[secθ+tan3θcosecθ] secθ[secθ+tan3θcosecθsecθ] secθ[1+tan3θcosecθsecθ]  \Rightarrow \dfrac{{\sec \theta }}{{\sec \theta }}\left[ {\sec \theta + {{\tan }^3}\theta \cos ec\theta } \right] \\\ \Rightarrow \sec \theta \left[ {\dfrac{{\sec \theta + {{\tan }^3}\theta \cos ec\theta }}{{\sec \theta }}} \right] \\\ \Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\tan }^3}\theta \cos ec\theta }}{{\sec \theta }}} \right] \\\
We know that secθ=1cosθ and cosecθ=1sinθ\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cos ec\theta = \dfrac{1}{{\sin \theta }}
Using this in the above equation we get
secθ[1+tan3θ1sinθ1cosθ] secθ[1+tan3θcosθsinθ]  \Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\tan }^3}\theta \dfrac{1}{{\sin \theta }}}}{{\dfrac{1}{{\cos \theta }}}}} \right] \\\ \Rightarrow \sec \theta \left[ {1 + {{\tan }^3}\theta \dfrac{{\cos \theta }}{{\sin \theta }}} \right] \\\
Once again since tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} we can write tan3θ=sin3θcos3θ{\tan ^3}\theta = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}
Using this in the above equation we get
secθ[1+sin3θcos3θcosθsinθ] secθ[1+sin2θcos2θ] secθ[1+tan2θ]  \Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\dfrac{{\cos \theta }}{{\sin \theta }}} \right] \\\ \Rightarrow \sec \theta \left[ {1 + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right] \\\ \Rightarrow \sec \theta \left[ {1 + {{\tan }^2}\theta } \right] \\\
Let the above equation be (2)
we know the identity sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
from this we can get the value of secθ\sec \theta
sec2θ=1+tan2θ secθ=1+tan2θ  \Rightarrow {\sec ^2}\theta = 1 + {\tan ^2}\theta \\\ \Rightarrow \sec \theta = \sqrt {1 + {{\tan }^2}\theta } \\\
Now let's use this in equation (2)
1+tan2θ[1+tan2θ] (1+tan2θ)12[1+tan2θ]  \Rightarrow \sqrt {1 + {{\tan }^2}\theta } \left[ {1 + {{\tan }^2}\theta } \right] \\\ \Rightarrow {\left( {1 + {{\tan }^2}\theta } \right)^{\dfrac{1}{2}}}\left[ {1 + {{\tan }^2}\theta } \right] \\\
Since the base is the same we can add up the powers
(1+tan2θ)32\Rightarrow {\left( {1 + {{\tan }^2}\theta } \right)^{\dfrac{3}{2}}}
From equation (1) we have tan2θ=1a2{\tan ^2}\theta = 1 - {a^2}
Using this we get
(1+(1a2))32 (1+1a2)32 (2a2)32  \Rightarrow {\left( {1 + \left( {1 - {a^2}} \right)} \right)^{\dfrac{3}{2}}} \\\ \Rightarrow {\left( {1 + 1 - {a^2}} \right)^{\dfrac{3}{2}}} \\\ \Rightarrow {\left( {2 - {a^2}} \right)^{\dfrac{3}{2}}} \\\
Hence we have obtained the right hand side .
Hence proved

Note:
Steps to keep in mind while solving trigonometric problems are

  1. Always start from the more complex side
  2. Express everything into sine and cosine
  3. Combine terms into a single fraction
  4. Use Pythagorean identities to transform between sin2x and cos2x{\sin ^2}x{\text{ and }}{\cos ^2}x
  5. Know when to apply double angle formula
  6. Know when to apply addition formula
  7. Good old expand/ factorize/ simplify/ cancelling