Solveeit Logo

Question

Question: If $\tan^{-1}(\frac{1}{2.1^2})+\tan^{-1}(\frac{1}{2.2^2})+\tan^{-1}(\frac{1}{2.3^2})+..$ up to infin...

If tan1(12.12)+tan1(12.22)+tan1(12.32)+..\tan^{-1}(\frac{1}{2.1^2})+\tan^{-1}(\frac{1}{2.2^2})+\tan^{-1}(\frac{1}{2.3^2})+.. up to infinite terms = λ\lambda.

Then the value of [tanλ2][\tan \frac{\lambda}{2}], where [.] represents the greatest integer function, is

Answer

0

Explanation

Solution

The given infinite series is S=n=1tan1(12n2)S = \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{2n^2}\right). Let the general term be Tn=tan1(12n2)T_n = \tan^{-1}\left(\frac{1}{2n^2}\right).

We want to express TnT_n in the form tan1(A)tan1(B)\tan^{-1}(A) - \tan^{-1}(B), using the identity: tan1(x)tan1(y)=tan1(xy1+xy)\tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x-y}{1+xy}\right).

We need to find xx and yy such that xy1+xy=12n2\frac{x-y}{1+xy} = \frac{1}{2n^2}. Let's try to set xy=1x-y = 1 and 1+xy=2n21+xy = 2n^2. This approach did not lead to simple terms for xx and yy.

Let's try to manipulate the argument 12n2\frac{1}{2n^2} by multiplying the numerator and denominator by a constant, say 2: 12n2=24n2\frac{1}{2n^2} = \frac{2}{4n^2}. Now we want to express 24n2\frac{2}{4n^2} in the form xy1+xy\frac{x-y}{1+xy}. Let xy=2x-y=2 and 1+xy=4n21+xy=4n^2. This means xy=4n21xy = 4n^2-1. We are looking for two terms xx and yy such that their difference is 2 and their product is 4n214n^2-1. Notice that 4n21=(2n)212=(2n1)(2n+1)4n^2-1 = (2n)^2 - 1^2 = (2n-1)(2n+1). So, if we choose x=2n+1x=2n+1 and y=2n1y=2n-1, then: xy=(2n+1)(2n1)=2x-y = (2n+1) - (2n-1) = 2. xy=(2n+1)(2n1)=4n21xy = (2n+1)(2n-1) = 4n^2-1. This works perfectly for the argument 24n2\frac{2}{4n^2}.

However, our original term is tan1(12n2)\tan^{-1}\left(\frac{1}{2n^2}\right), not tan1(24n2)\tan^{-1}\left(\frac{2}{4n^2}\right). Let's try to choose xx and yy such that xy=1x-y=1 and 1+xy=2n21+xy=2n^2. This was the first attempt. Let x=12n1x = \frac{1}{2n-1} and y=12n+1y = \frac{1}{2n+1}. Then, xy=12n112n+1=(2n+1)(2n1)(2n1)(2n+1)=24n21x-y = \frac{1}{2n-1} - \frac{1}{2n+1} = \frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)} = \frac{2}{4n^2-1}. 1+xy=1+1(2n1)(2n+1)=1+14n21=4n21+14n21=4n24n211+xy = 1 + \frac{1}{(2n-1)(2n+1)} = 1 + \frac{1}{4n^2-1} = \frac{4n^2-1+1}{4n^2-1} = \frac{4n^2}{4n^2-1}. Now, substituting these into the tan1\tan^{-1} identity: tan1(xy1+xy)=tan1(24n214n24n21)=tan1(24n2)=tan1(12n2)\tan^{-1}\left(\frac{x-y}{1+xy}\right) = \tan^{-1}\left(\frac{\frac{2}{4n^2-1}}{\frac{4n^2}{4n^2-1}}\right) = \tan^{-1}\left(\frac{2}{4n^2}\right) = \tan^{-1}\left(\frac{1}{2n^2}\right). This is exactly the general term TnT_n.

So, we have found that: Tn=tan1(12n2)=tan1(12n1)tan1(12n+1)T_n = \tan^{-1}\left(\frac{1}{2n^2}\right) = \tan^{-1}\left(\frac{1}{2n-1}\right) - \tan^{-1}\left(\frac{1}{2n+1}\right).

Now, let's write out the sum for the first NN terms, SNS_N: For n=1n=1: T1=tan1(11)tan1(13)T_1 = \tan^{-1}\left(\frac{1}{1}\right) - \tan^{-1}\left(\frac{1}{3}\right) For n=2n=2: T2=tan1(13)tan1(15)T_2 = \tan^{-1}\left(\frac{1}{3}\right) - \tan^{-1}\left(\frac{1}{5}\right) For n=3n=3: T3=tan1(15)tan1(17)T_3 = \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{7}\right) ... For n=Nn=N: TN=tan1(12N1)tan1(12N+1)T_N = \tan^{-1}\left(\frac{1}{2N-1}\right) - \tan^{-1}\left(\frac{1}{2N+1}\right)

Summing these terms, we see that it's a telescoping series: SN=n=1N[tan1(12n1)tan1(12n+1)]=tan1(1)tan1(12N+1)S_N = \sum_{n=1}^{N} \left[ \tan^{-1}\left(\frac{1}{2n-1}\right) - \tan^{-1}\left(\frac{1}{2n+1}\right) \right] = \tan^{-1}(1) - \tan^{-1}\left(\frac{1}{2N+1}\right).

The problem asks for the sum up to infinite terms, which is λ\lambda. So we take the limit as NN \to \infty: λ=limNSN=limN[tan1(1)tan1(12N+1)]\lambda = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \left[ \tan^{-1}(1) - \tan^{-1}\left(\frac{1}{2N+1}\right) \right]. As NN \to \infty, the term 12N+10\frac{1}{2N+1} \to 0. So, tan1(12N+1)tan1(0)=0\tan^{-1}\left(\frac{1}{2N+1}\right) \to \tan^{-1}(0) = 0. Therefore, λ=tan1(1)0=π4\lambda = \tan^{-1}(1) - 0 = \frac{\pi}{4}.

Finally, we need to find the value of [tanλ2][\tan \frac{\lambda}{2}]. Substitute λ=π4\lambda = \frac{\pi}{4}: λ2=π/42=π8\frac{\lambda}{2} = \frac{\pi/4}{2} = \frac{\pi}{8}. Now, we need to calculate tan(π8)\tan\left(\frac{\pi}{8}\right). We know the half-angle formula for tangent: tan(θ2)=1cosθsinθ\tan\left(\frac{\theta}{2}\right) = \frac{1-\cos\theta}{\sin\theta}. Let θ=π4\theta = \frac{\pi}{4}. tan(π8)=1cos(π/4)sin(π/4)\tan\left(\frac{\pi}{8}\right) = \frac{1-\cos(\pi/4)}{\sin(\pi/4)}. We know cos(π/4)=12\cos(\pi/4) = \frac{1}{\sqrt{2}} and sin(π/4)=12\sin(\pi/4) = \frac{1}{\sqrt{2}}. tan(π8)=11212=21212=21\tan\left(\frac{\pi}{8}\right) = \frac{1-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = \frac{\frac{\sqrt{2}-1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = \sqrt{2}-1.

Now, we need to find the greatest integer function of tan(π8)\tan\left(\frac{\pi}{8}\right): [tanλ2]=[21][\tan \frac{\lambda}{2}] = [\sqrt{2}-1]. We know that 21.414\sqrt{2} \approx 1.414. So, 211.4141=0.414\sqrt{2}-1 \approx 1.414 - 1 = 0.414. The greatest integer less than or equal to 0.4140.414 is 00.

The final answer is 0\boxed{0}.

Explanation of the solution:

  1. Identify the general term: The given series is n=1tan1(12n2)\sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{2n^2}\right). Let Tn=tan1(12n2)T_n = \tan^{-1}\left(\frac{1}{2n^2}\right).
  2. Apply telescoping sum technique: The goal is to express TnT_n in the form tan1(f(n))tan1(f(n+1))\tan^{-1}(f(n)) - \tan^{-1}(f(n+1)) or similar. Use the identity tan1(x)tan1(y)=tan1(xy1+xy)\tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x-y}{1+xy}\right). By choosing x=12n1x = \frac{1}{2n-1} and y=12n+1y = \frac{1}{2n+1}, we find that: xy1+xy=12n112n+11+1(2n1)(2n+1)=(2n+1)(2n1)(2n1)(2n+1)(2n1)(2n+1)+1(2n1)(2n+1)=24n21+1=24n2=12n2\frac{x-y}{1+xy} = \frac{\frac{1}{2n-1} - \frac{1}{2n+1}}{1 + \frac{1}{(2n-1)(2n+1)}} = \frac{\frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)}}{\frac{(2n-1)(2n+1)+1}{(2n-1)(2n+1)}} = \frac{2}{4n^2-1+1} = \frac{2}{4n^2} = \frac{1}{2n^2}. Thus, Tn=tan1(12n1)tan1(12n+1)T_n = \tan^{-1}\left(\frac{1}{2n-1}\right) - \tan^{-1}\left(\frac{1}{2n+1}\right).
  3. Sum the series: Write out the first few terms of the series to observe the telescoping pattern: T1=tan1(1)tan1(13)T_1 = \tan^{-1}(1) - \tan^{-1}\left(\frac{1}{3}\right) T2=tan1(13)tan1(15)T_2 = \tan^{-1}\left(\frac{1}{3}\right) - \tan^{-1}\left(\frac{1}{5}\right) T3=tan1(15)tan1(17)T_3 = \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{7}\right) ... The sum of the first NN terms is SN=tan1(1)tan1(12N+1)S_N = \tan^{-1}(1) - \tan^{-1}\left(\frac{1}{2N+1}\right).
  4. Find the infinite sum (λ\lambda): Take the limit as NN \to \infty: λ=limN(tan1(1)tan1(12N+1))=tan1(1)tan1(0)=π40=π4\lambda = \lim_{N \to \infty} \left( \tan^{-1}(1) - \tan^{-1}\left(\frac{1}{2N+1}\right) \right) = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}.
  5. Calculate the final expression: The question asks for [tanλ2][\tan \frac{\lambda}{2}]. λ2=π/42=π8\frac{\lambda}{2} = \frac{\pi/4}{2} = \frac{\pi}{8}. Calculate tan(π8)\tan\left(\frac{\pi}{8}\right) using the half-angle formula tan(θ2)=1cosθsinθ\tan\left(\frac{\theta}{2}\right) = \frac{1-\cos\theta}{\sin\theta} with θ=π4\theta = \frac{\pi}{4}: tan(π8)=1cos(π/4)sin(π/4)=11/21/2=2122=21\tan\left(\frac{\pi}{8}\right) = \frac{1-\cos(\pi/4)}{\sin(\pi/4)} = \frac{1-1/\sqrt{2}}{1/\sqrt{2}} = \frac{\sqrt{2}-1}{\sqrt{2}} \cdot \sqrt{2} = \sqrt{2}-1.
  6. Apply the greatest integer function: [tanλ2]=[21][\tan \frac{\lambda}{2}] = [\sqrt{2}-1]. Since 21.414\sqrt{2} \approx 1.414, 210.414\sqrt{2}-1 \approx 0.414. The greatest integer less than or equal to 0.4140.414 is 00.