Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If tan15+1tan75+1tan105+tan195=2a\tan 15^{\circ}+\frac{1}{\tan 75^{\circ}}+\frac{1}{\tan 105^{\circ}}+\tan 195^{\circ}=2 a, then the value of (a+1a)\left(a+\frac{1}{a}\right) is :

A

4

B

2

C

4234-2 \sqrt{3}

D

53235-\frac{3}{2} \sqrt{3}

Answer

4

Explanation

Solution

tan15=23tan15^∘=2−\sqrt3​

1tan75=cot75=23\frac1{tan75^∘}=cot75^∘=2−\sqrt3​

1tan105=cot(105)=cot75=32\frac1{tan105^∘}​=cot(105^∘)=−cot75^∘=\sqrt3​ −2

tan195=tan15=23tan195^∘=tan15^∘=2−\sqrt3​

2(23​​)=2a∴2(2−\sqrt3​ ​)=2a

a=23​​⇒a=2−\sqrt3​ ​

a+1a=231+123=84323⇒a+\frac1{a​}= \frac{2-\sqrt3​ }1 + \frac1{2-\sqrt3​ } =\frac{8-4\sqrt3​ }{2-\sqrt3​ }

=84323×2+32+3=41=\frac{8-4\sqrt3​ }{2-\sqrt3​ } \times \frac{2+\sqrt3​ }{2+\sqrt3​ }= \frac{4}1

== 44

Therefore, The correct answer is option (A) : 4