Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If tan1x+tan1y=4π5tan^{-1} \,x + tan^{-1} \,y = \frac{4\pi}{5}, then cot1x+cot1ycot^{-1}\, x + cot^{-1} \,y is equal to

A

π\pi

B

π5\frac{\pi}{5}

C

2π5\frac{2 \pi}{5}

D

3π5\frac{3 \pi}{5}

Answer

π5\frac{\pi}{5}

Explanation

Solution

The correct answer is B:π5\frac{\pi}{5}
Given that;
tan1x+tan1y=4π5tan^{-1}x+tan^{-1}y=\frac{4\pi}{5}-(i)
we know that,
tan1x+cot1x=π2tan^{-1}x+cot^{-1}x=\frac{\pi}{2}
(tan1=π2cot1x)(\therefore tan^{-1}=\frac{\pi}{2}-cot^{-1}x)
Then on converting the parent equation to the above form we get;
π2cot1x+π2cot1y=4π5\frac{\pi}{2}-cot^{-1}x+\frac{\pi}{2}-cot^{-1}y=\frac{4\pi}{5}
cot1xcot1y=4π5π-cot^{-1}x-cot^{-1}y=\frac{4\pi}{5}-\pi
cot1x+cot1y=π5cot^{-1}x+cot^{-1}y=\frac{\pi}{5}
cot