Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If (tan1x)2+(cot1x)2=5xπ28(tan^{-1} x)^2 + (cot^{-1}x)^2 = \frac{5x\pi^2}{8}, x=?

Answer

Given that tan1(x)+cot1(x)=2π2tan^{-1}(x) + cot^{-1}(x) = \frac{2π}{2}, the equation can be rearranged as:

(tan1(x)+cot1(x))22tan1(x)(2π2tan1(x))=8(5π2)(tan^{-1}(x) + cot^{-1}(x))^2 - 2tan^{-1}(x)(\frac{2π}{2} - tan^{-1}(x)) = \frac{8}{(\frac{5π}{2})}

Simplifying further: 2(tan1(x))22(2π2)tan1(x)8(3π2)=02(tan^{-1}(x))^2 - 2(\frac{2π}{2})tan^{-1}(x) - \frac{8}{(\frac{3π}{2})} = 0

This can be rewritten as: 2(tan1(x))22(π)tan1(x)8(3π2)=02(tan^{-1}(x))^2 - 2(π)tan^{-1}(x) - \frac{8}{(\frac{3π}{2})} = 0

From this equation, we can deduce that tan1(x)=4π3tan^{-1}(x) = \frac{-4π}{3} or 4π3\frac{4π}{3}.

Hence, the solutions are x=1x = -1.