Solveeit Logo

Question

Question: If \({\tan ^{ - 1}}\left( {\sqrt 3 } \right) + {\cot ^{ - 1}}{\text{x}} = \dfrac{{{\pi }}}{2}\), the...

If tan1(3)+cot1x=π2{\tan ^{ - 1}}\left( {\sqrt 3 } \right) + {\cot ^{ - 1}}{\text{x}} = \dfrac{{{\pi }}}{2}, then find the value of x.

Explanation

Solution

Hint: The principal value of an inverse trigonometric function at a point x is the value of the inverse function at the point x, which lies in the range of the principal branch. We have to find the principal value of tan1(1)tan^{-1}(-1). We know that the principal value of tan1(x)tan^{-1}(x) is given by (π2,π2)\left( { - \dfrac{{{\pi }}}{2},\dfrac{{{\pi }}}{2}} \right). The principal value of the cotangent function is from (0,π)\left( {0,{{\pi }}} \right). We will add the principal values of both the terms and then add them.

Complete step-by-step answer:
The values of the tangent functions are-

Function0o0^o30o30^o45o45^o60o60^o90o90^o
tan013\dfrac{1}{{\sqrt 3 }}13\sqrt 3 Not defined
cotNot defined3\sqrt 3 113\dfrac{1}{{\sqrt 3 }}0

In the given question first we need to find the principal value of tan1(3){\tan ^{ - 1}}\left( {\sqrt 3 } \right). We know that for tangent function to be negative, the angle should be obtuse, that is greater than 90o90^o. We know that the value of tan60o=3\tan {60^o} = \sqrt 3 so
tan1(3)=60o{\tan ^{ - 1}}\left( {\sqrt 3 } \right) = {60^{\text{o}}}
We know that π{{\pi }} rad = 180o180^o, so
tan1(3)=π3{\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{{{\pi }}}{3}
So, substituting this value in the equation we get that-
cot1x=π2π3=π6{\cot ^{ - 1}}{\text{x}} = \dfrac{{{\pi }}}{2} - \dfrac{{{\pi }}}{3} = \dfrac{{{\pi }}}{6}
x=cotπ6=3{\text{x}} = \cot \dfrac{{{\pi }}}{6} = \sqrt 3
This is the required value of x.

Note: In such types of questions, we need to strictly follow the range of the principal values that have been specified. The range of principal values of tangent function is from 90o-90^o to 90o90^o, and for cotangent function is from 0o0^o to 180o180^o. This is because there can be infinite values of any inverse trigonometric functions. We can also directly use the identity that-
tan1x+cot1x=π2 cot1x=π2tan13 cot1x=cot13 x=3 \begin{aligned} &{\tan ^{ - 1}}{\text{x}} + {\cot ^{ - 1}}{\text{x}} = \dfrac{{{\pi }}}{2} \\\ &{\cot ^{ - 1}}{\text{x}} = \dfrac{{{\pi }}}{2} - {\tan ^{ - 1}}\sqrt 3 \\\ &{\cot ^{ - 1}}{\text{x}} = {\cot ^{ - 1}}\sqrt 3 \\\ &{\text{x}} = \sqrt 3 \\\ \end{aligned}