Question
Mathematics Question on Continuity and differentiability
If tan−1(yx)+logx2+y2=0 , then dydx=
A
x2−y2x2+y2
B
x+yx−y
C
x−yx+y
D
x2+y2x2−y2
Answer
x+yx−y
Explanation
Solution
tan−1(yx)+logx2+y2=0
Differentiating w.r.t. 'y', we get
(1+(yx)21)(y2ydydx−x.1)+x2+y21.21x2+y2(2xdydx+2y)=0
⇒(x2+y2y2)(y2ydydx−x)+(x2+y2)xdydx+y=0
⇒x2+y2ydydx−x+xdydx+y=0
⇒(y+x)dydx+y−x=0⇒dydx=x+yx−y