Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If tan1(xy)+logx2+y2=0\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0 , then dxdy=\frac{dx}{dy} =

A

x2+y2x2y2\frac{x^{2} +y^{2}}{x^{2} -y^{2}}

B

xyx+y\frac{x - y}{x + y}

C

x+yxy\frac{x + y}{x - y}

D

x2y2x2+y2\frac{x^{2} -y^{2}}{x^{2} +y^{2}}

Answer

xyx+y\frac{x - y}{x + y}

Explanation

Solution

tan1(xy)+logx2+y2=0\tan^{-1} \left(\frac{x}{y}\right) + \log\sqrt{x^{2} +y^{2}} = 0
Differentiating w.r.t. 'y', we get
(11+(xy)2)(ydxdyx.1y2)+1x2+y2.12(2xdxdy+2y)x2+y2=0\left(\frac{1}{1+\left(\frac{x}{y}\right)^{2}}\right)\left(\frac{y \frac{dx}{dy} -x.1}{y^{2}}\right) + \frac{1}{\sqrt{x^{2}+y^{2}}} . \frac{1}{2} \frac{\left(2x \frac{dx}{dy} +2y\right)}{\sqrt{x^{2} +y^{2}}} = 0
(y2x2+y2)(ydxdyxy2)+xdxdy+y(x2+y2)=0\Rightarrow \left(\frac{y^{2}}{x^{2} +y^{2}}\right)\left(\frac{y \frac{dx}{dy}-x}{y^{2}}\right) + \frac{x \frac{dx}{dy }+y}{\left(x^{2} +y^{2}\right)} = 0
ydxdyx+xdxdy+yx2+y2=0\Rightarrow \frac{y \frac{dx}{dy} -x+x \frac{dx}{dy} +y}{x^{2} +y^{2}} = 0
(y+x)dxdy+yx=0dxdy=xyx+y\Rightarrow \left(y+x\right) \frac{dx}{dy} +y -x = 0 \Rightarrow \frac{dx}{dy} = \frac{x-y}{x+y}