Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If tan1(23x+1)=cot1(33x+1)\tan^{-1}\left(\frac{2}{3 - x + 1}\right) = \cot^{-1}\left(\frac{3}{3x + 1}\right), then which one of the following is true?

A

There is no real value of xx satisfying the above equation.

B

There is one positive and one negative real value of xx satisfying the above equation.

C

There are two real positive values of xx satisfying the above equation.

D

There are two real negative values of xx satisfying the above equation.

Answer

There is one positive and one negative real value of xx satisfying the above equation.

Explanation

Solution

Given the equation:

tan1(23x+1)=cot1(33x+1).\tan^{-1} \left( \frac{2}{3x + 1} \right) = \cot^{-1} \left( \frac{3}{3x + 1} \right).

We know that cot1y=π2tan1y\cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y. Thus, we can rewrite the equation as:

tan1(23x+1)=π2tan1(33x+1).\tan^{-1} \left( \frac{2}{3x + 1} \right) = \frac{\pi}{2} - \tan^{-1} \left( \frac{3}{3x + 1} \right).

Now, use the identity tan1a+tan1b=tan1(a+b1ab)\tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) for a=23x+1a = \frac{2}{3x + 1} and b=33x+1b = \frac{3}{3x + 1}:

tan1(23x+1)+tan1(33x+1)=tan1(23x+1+33x+1123x+133x+1).\tan^{-1} \left( \frac{2}{3x + 1} \right) + \tan^{-1} \left( \frac{3}{3x + 1} \right) = \tan^{-1} \left( \frac{\frac{2}{3x+1} + \frac{3}{3x+1}}{1 - \frac{2}{3x+1} \cdot \frac{3}{3x+1}} \right).

Simplify this expression to find the values of xx, resulting in two solutions: one positive and one negative.

Thus, the correct answer is: (2) There is one positive and one negative real value of xx.