Solveeit Logo

Question

Question: If \[{\tan ^{ - 1}}\left\\{ {\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \...

If {\tan ^{ - 1}}\left\\{ {\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}} \right\\} = \alpha , then x2{x^2} ==
A.sin2α B.sinα C.cos2α D.cosα  A.\sin 2\alpha \\\ B.\sin \alpha \\\ C.\cos 2\alpha \\\ D.\cos \alpha \\\

Explanation

Solution

Hint:In this question we will use the concept of componendo and dividendo i.e. a+bab=c+dcd\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}} and some basis conversions like tanα=sinαcosα\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }} and 2sinαcosα=sin2α2\sin \alpha \cos \alpha = \sin 2\alpha . Use this to find the value of x2{x^2}.

Complete step-by-step answer:
According to the question it is given {\tan ^{ - 1}}\left\\{ {\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}} \right\\} = \alpha ,
Applying tan on both side, we can write it as
1+x21x21+x2+1x2=tanα1\dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha }}{1} [tanα1\left[ {\dfrac{{\tan \alpha }}{1}} \right. because componendo and dividendo is used i.e.ab=cd]\left. {\dfrac{a}{b} = \dfrac{c}{d}} \right]
We know that in componendo and dividendo a+bab=c+dcd\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}
Now,
1+x21x2+1+x2+1x21+x21x21+x21x2=tanα+1tanα1 21+x221x2=tanα+1tanα1  \Rightarrow \dfrac{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} + \sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} - \sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha + 1}}{{\tan \alpha - 1}} \\\ \Rightarrow \dfrac{{2\sqrt {1 + {x^2}} }}{{ - 2\sqrt {1 - {x^2}} }} = \dfrac{{\tan \alpha + 1}}{{\tan \alpha - 1}} \\\
Change the sign so we can write,
1+x21x2=1+tanα1tanα\Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{1 + \tan \alpha }}{{1 - \tan \alpha }}
Now we can write tanα=sinαcosα\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}
Hence,
1+x21x2=1+sinαcosα1sinαcosα 1+x21x2=cosα+sinαcosαcosαsinαcosα  \Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{1 + \dfrac{{\sin \alpha }}{{\cos \alpha }}}}{{1 - \dfrac{{\sin \alpha }}{{\cos \alpha }}}} \\\ \Rightarrow \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} }} = \dfrac{{\dfrac{{\cos \alpha + \sin \alpha }}{{\cos \alpha }}}}{{\dfrac{{\cos \alpha - \sin \alpha }}{{\cos \alpha }}}} \\\
Squaring on both the sides,

1+x21x2=(cosα+sinα)2(cosαsinα)2 1+x21x2=cos2α+sin2α+2sinαcosαcos2α+sin2α2sinαcosα 1+x21x2=1+2sinαcosα12sinαcosα  \Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{{{\left( {\cos \alpha + \sin \alpha } \right)}^2}}}{{{{\left( {\cos \alpha - \sin \alpha } \right)}^2}}} \\\ \Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 2\sin \alpha \cos \alpha }}{{{{\cos }^2}\alpha + {{\sin }^2}\alpha - 2\sin \alpha \cos \alpha }} \\\ \Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{1 + 2\sin \alpha \cos \alpha }}{{1 - 2\sin \alpha \cos \alpha }} \\\

We know that 2sinαcosα=sin2α2\sin \alpha \cos \alpha = \sin 2\alpha
Hence, by substituting the value we get
1+x21x2=1+sin2α1sin2α\Rightarrow \dfrac{{1 + {x^2}}}{{1 - {x^2}}} = \dfrac{{1 + \sin 2\alpha }}{{1 - \sin 2\alpha }}
Apply componendo and dividendo again, we get
1+x2+1x21+x21+x2=1+sin2α+1sin2α1+sin2α1+sin2α 22x2=22sin2α x2=sin2α  \Rightarrow \dfrac{{1 + {x^2} + 1 - {x^2}}}{{1 + {x^2} - 1 + {x^2}}} = \dfrac{{1 + \sin 2\alpha + 1 - \sin 2\alpha }}{{1 + \sin 2\alpha - 1 + \sin 2\alpha }} \\\ \Rightarrow \dfrac{2}{{2{x^2}}} = \dfrac{2}{{2\sin 2\alpha }} \\\ \Rightarrow {x^2} = \sin 2\alpha \\\
So the value of x2{x^2} is sin2α\sin 2\alpha

Note: It is always advisable to remember some basic concepts and basic conversions while involving trigonometric questions as it saves a lot of time.For above question we used concept of componendo and dividendo i.e. a+bab=c+dcd\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}} for solving the problem.Students make mistakes while applying componendo and dividendo have to take care of values which is a and b from the given equation and to find a+b and a-b values and also should remember trigonometric ratios and identities for solving these types of problems.