Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If tan1(2x)+tan1(3x)=π4\tan^{-1} \left(2x\right) + \tan^{-1} \left(3x\right) = \frac{\pi}{4} then x is equal to :

A

-1

B

-2

C

1

D

2

Answer

-1

Explanation

Solution

Given : tan1(2x)+tan1(3x)=π4\tan^{-1} \left(2x\right) +\tan^{-1}\left(3x\right) = \frac{\pi}{4} tan1(2x+3x)(12x3x)=tan1(1) \Rightarrow \tan^{-1} \frac{\left(2x +3x\right)}{\left(1-2x 3x\right) } = \tan^{-1}\left(1\right) 5x16x2=16x2+5x1=0 \Rightarrow \frac{5x}{ 1 - 6x^{2}} = 1 \Rightarrow 6x^{2} + 5x - 1 = 0 (6x1)(x+1)=0x=16 \Rightarrow \left(6x -1\right) \left(x + 1\right) = 0 \Rightarrow x = \frac{1}{6} or 1- 1 But x = - 1 is in the option .