Solveeit Logo

Question

Question: If $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x} = 4^\circ$, then;...

If tan11+x21x=4\tan^{-1} \frac{\sqrt{1+x^2}-1}{x} = 4^\circ, then;

A

x = tan 2°

B

x = tan 4°

C

x = tan (1/4)(1/4)^\circ

D

x = tan 8°

Answer

x = tan 8°

Explanation

Solution

Given:

tan1(1+x21x)=4\tan^{-1}\left( \frac{\sqrt{1+x^2}-1}{x} \right)= 4^\circ.

Let θ=4\theta = 4^\circ. Then,

1+x21x=tan4\frac{\sqrt{1+x^2}-1}{x} = \tan 4^\circ.

Recall the half-angle identity:

tanϕ2=1+tan2ϕ1tanϕ\tan\frac{\phi}{2} = \frac{\sqrt{1+\tan^2\phi}-1}{\tan\phi}.

Setting x=tanϕx = \tan\phi, we have:

1+tan2ϕ1tanϕ=tanϕ2\frac{\sqrt{1+\tan^2\phi}-1}{\tan\phi} = \tan\frac{\phi}{2}.

Comparing with the given expression, we require:

tanϕ2=tan4ϕ2=4ϕ=8\tan\frac{\phi}{2} = \tan4^\circ \quad \Longrightarrow \quad \frac{\phi}{2} = 4^\circ \quad \Longrightarrow \quad \phi = 8^\circ.

Thus, x=tanϕ=tan8x = \tan\phi = \tan 8^\circ.