Question
Question: If $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x} = 4^\circ$, then;...
If tan−1x1+x2−1=4∘, then;
A
x = tan 2°
B
x = tan 4°
C
x = tan (1/4)∘
D
x = tan 8°
Answer
x = tan 8°
Explanation
Solution
Given:
tan−1(x1+x2−1)=4∘.
Let θ=4∘. Then,
x1+x2−1=tan4∘.
Recall the half-angle identity:
tan2ϕ=tanϕ1+tan2ϕ−1.
Setting x=tanϕ, we have:
tanϕ1+tan2ϕ−1=tan2ϕ.
Comparing with the given expression, we require:
tan2ϕ=tan4∘⟹2ϕ=4∘⟹ϕ=8∘.
Thus, x=tanϕ=tan8∘.