Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If tan11x1+x=12tan1x\tan^{-1}\frac{1-x}{1+x}=\frac{1}{2}\tan^{-1}x, then the value of xx is

A

12\frac{1}{2}

B

13\frac{1}{\sqrt3}

C

3\sqrt3

D

22

Answer

13\frac{1}{\sqrt3}

Explanation

Solution

Put 12tan1x=θ\frac{1}{2}tan^{-1} x = \theta x=tan2θ\Rightarrow x = tan\, 2\,\theta 1x1+x=1tan2θ1+tan2θ\therefore \frac{1-x}{1+x} = \frac{1-tan\,2\,\theta}{1+tan\,2\,\theta} =tan(π42θ) = tan\left(\frac{\pi}{4}-2\,\theta\right) tan11x1+x=π42θ\therefore tan^{-1} \frac{1-x}{1+x} = \frac{\pi}{4} -2\,\theta π42θ=θ\therefore \frac{\pi}{4} -2\,\theta = \theta 3θ=π4\Rightarrow 3\,\theta = \frac{\pi}{4} θ=π12\Rightarrow \theta = \frac{\pi}{12} 2θ=π6\Rightarrow 2\,\theta= \frac{\pi}{6} x=tan2θ\therefore x= tan\, 2\,\theta =tanπ6= tan \frac{\pi}{6} =13 = \frac{1}{\sqrt{3}}