Question
Mathematics Question on Inverse Trigonometric Functions
If tan−11+x1−x=21tan−1x, then the value of x is
A
21
B
31
C
3
D
2
Answer
31
Explanation
Solution
Put 21tan−1x=θ ⇒x=tan2θ ∴1+x1−x=1+tan2θ1−tan2θ =tan(4π−2θ) ∴tan−11+x1−x=4π−2θ ∴4π−2θ=θ ⇒3θ=4π ⇒θ=12π ⇒2θ=6π ∴x=tan2θ =tan6π =31