Question
Mathematics Question on Inverse Trigonometric Functions
If tan−1(1−x),tan−1(x) and tan−1(1+x) are in A.P., then the value of x3+x2 is equal to
A
2
B
−1
C
1
D
−2
Answer
1
Explanation
Solution
Given that, tan−1(1−x),tan−1x
and tan−1(1+x) are in AP, then
2tan−1x=tan−1(1−x)+tan−1(1+x)
⇒ tan−1(1−x22x)=tan−1(1−(1−x)(1+x)1−x+1+x)
⇒ tan−1(1−x22x)=tan−1(x22)
⇒ 1−x22x=x22
⇒ x3=1−x2
⇒ x3+x2=1