Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If tan1(1x),tan1(x){{\tan }^{-1}}\,(1-x),\,\,{{\tan }^{-1}}\,(x) and tan1(1+x){{\tan }^{-1}}\,(1+x) are in A.P.A.P., then the value of x3+x2{{x}^{3}}+{{x}^{2}} is equal to

A

22

B

1-1

C

11

D

2-2

Answer

11

Explanation

Solution

Given that, tan1(1x),tan1x{{\tan }^{-1}}\,(1-x),\,\,\,{{\tan }^{-1}}x
and tan1(1+x){{\tan }^{-1}}\,(1+x) are in AP, then
2tan1x=tan1(1x)+tan1(1+x)2{{\tan }^{-1}}x={{\tan }^{-1}}\,(1-x)+{{\tan }^{-1}}\,(1+x)
\Rightarrow tan1(2x1x2)=tan1(1x+1+x1(1x)(1+x)){{\tan }^{-1}}\left( \frac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \frac{1-x+1+x}{1-(1-x)\,(1+x)} \right)
\Rightarrow tan1(2x1x2)=tan1(2x2){{\tan }^{-1}}\,\left( \frac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \frac{2}{{{x}^{2}}} \right)
\Rightarrow 2x1x2=2x2\frac{2x}{1-{{x}^{2}}}=\frac{2}{{{x}^{2}}}
\Rightarrow x3=1x2{{x}^{3}}=1-{{x}^{2}}
\Rightarrow x3+x2=1{{x}^{3}}+{{x}^{2}}=1