Solveeit Logo

Question

Question: If \(\tan^{- 1}\frac{\sqrt{1 - x^{2}} - 1}{x} = 4\), then...

If tan11x21x=4\tan^{- 1}\frac{\sqrt{1 - x^{2}} - 1}{x} = 4, then

A

x=tan2x = \tan 2

B

x=tan4x = \tan 4

C

x = tan(1/4)

D

x=tan8x = \tan 8

Answer

x=tan8x = \tan 8

Explanation

Solution

Taking x=tanθ,tan11x21x=tan1secθ1tanθx = \tan\theta,\tan^{- 1}\frac{\sqrt{1 - x^{2}} - 1}{x} = \tan^{- 1}\frac{\sec\theta - 1}{\tan\theta}

= tan11cosθsinθ=tan1(tanθ2)=(12)θ=(12)tan1x\tan^{- 1}\frac{1 - \cos\theta}{\sin\theta} = \tan^{- 1}\left( \tan\frac{\theta}{2} \right) = \left( \frac{1}{2} \right)\theta = \left( \frac{1}{2} \right)\tan^{- 1}x

So that according to the given condition

(12)tan1x=4\left( \frac{1}{2} \right)\tan^{- 1}x = 4tan1x=8\tan^{- 1}x = 8 or x=tan8x = \tan 8