Question
Question: If \(\tan^{- 1}(\alpha + i\beta) = x + iy,\) then \(x =\)...
If tan−1(α+iβ)=x+iy, then x=
A
21tan−1(1−α2−β22α)
B
21tan−1(1+α2+β22α)
C
tan−1(1−α2−β22α)
D
None of these
Answer
21tan−1(1−α2−β22α)
Explanation
Solution
tan−1(α+iβ)=x+iy
tan−1(α−iβ)=x−iy
2x=x+iy+x−iy = tan−1(α+iβ)+tan−1(α−iβ)
∴ x=21tan−11−α2−β22α= 21tan−11−(α+iβ)(α−iβ)α+iβ+α−iβ
= 21tan−1(1−α2−β22α)