Solveeit Logo

Question

Question: If \(\tan^{- 1}(\alpha + i\beta) = x + iy,\) then \(x =\)...

If tan1(α+iβ)=x+iy,\tan^{- 1}(\alpha + i\beta) = x + iy, then x=x =

A

12tan1(2α1α2β2)\frac{1}{2}\tan^{- 1}\left( \frac{2\alpha}{1 - \alpha^{2} - \beta^{2}} \right)

B

12tan1(2α1+α2+β2)\frac{1}{2}\tan^{- 1}\left( \frac{2\alpha}{1 + \alpha^{2} + \beta^{2}} \right)

C

tan1(2α1α2β2)\tan^{- 1}\left( \frac{2\alpha}{1 - \alpha^{2} - \beta^{2}} \right)

D

None of these

Answer

12tan1(2α1α2β2)\frac{1}{2}\tan^{- 1}\left( \frac{2\alpha}{1 - \alpha^{2} - \beta^{2}} \right)

Explanation

Solution

tan1(α+iβ)=x+iy\tan^{- 1}(\alpha + i\beta) = x + iy

tan1(αiβ)=xiy\tan^{- 1}(\alpha - i\beta) = x - iy

2x=x+iy+xiy2x = x + iy + x - iy = tan1(α+iβ)+tan1(αiβ)\tan^{- 1}(\alpha + i\beta) + \tan^{- 1}(\alpha - i\beta)

\therefore x=12tan12α1α2β2x = \frac{1}{2}\tan^{- 1}\frac{2\alpha}{1 - \alpha^{2} - \beta^{2}}= 12tan1α+iβ+αiβ1(α+iβ)(αiβ)\frac{1}{2}\tan^{- 1}\frac{\alpha + i\beta + \alpha - i\beta}{1 - (\alpha + i\beta)(\alpha - i\beta)}

= 12tan1(2α1α2β2)\frac{1}{2}\tan^{- 1}\left( \frac{2\alpha}{1 - \alpha^{2} - \beta^{2}} \right)