Solveeit Logo

Question

Question: If \[ta{{n}^{-1}}a+ta{{n}^{-1}}b+ta{{n}^{-1}}c=\pi \], prove that a+ b + c = abc....

If tan1a+tan1b+tan1c=πta{{n}^{-1}}a+ta{{n}^{-1}}b+ta{{n}^{-1}}c=\pi , prove that a+ b + c = abc.

Explanation

Solution

Hint: For solving this problem, first we apply the addition identity for the inverse of tan function to simplify the expression on the left hand side. After getting a simplified expression, we apply tan function to both sides. By using this methodology, we can easily obtain our answer.

Complete step-by-step answer:
First, we take left-hand side to simplify:
tan1a+tan1b+tan1c\Rightarrow ta{{n}^{-1}}a+ta{{n}^{-1}}b+ta{{n}^{-1}}c
Now, by applying the trigonometric property tan1x+tan1y=tan1(x+y1xy)ta{{n}^{-1}}x+ta{{n}^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right), we get
tan1(a+b1ab)+tan1c\Rightarrow ta{{n}^{-1}}\left( \dfrac{a+b}{1-ab} \right)+ta{{n}^{-1}}c
Applying the same formula again in the tan1(a+b1ab)+tan1cta{{n}^{-1}}\left( \dfrac{a+b}{1-ab} \right)+ta{{n}^{-1}}c to simplify it further, we get
tan1(a+b1ab+c1(a+b1ab)c) tan1(a+b+cabc1ab1abacbc1ab) tan1(a+b+cabc1abbcca) \begin{aligned} & \Rightarrow ta{{n}^{-1}}\left( \dfrac{\dfrac{a+b}{1-ab}+c}{1-\left( \dfrac{a+b}{1-ab} \right)c} \right) \\\ & \Rightarrow ta{{n}^{-1}}\left( \dfrac{\dfrac{a+b+c-abc}{1-ab}}{\dfrac{1-ab-ac-bc}{1-ab}} \right) \\\ & \Rightarrow ta{{n}^{-1}}\left( \dfrac{a+b+c-abc}{1-ab-bc-ca} \right) \\\ \end{aligned}
Now, by using the right-hand side, we get
tan1(a+b+cabc1abbcca)=π{{\tan }^{-1}}\left( \dfrac{a+b+c-abc}{1-ab-bc-ca} \right)=\pi
Applying tan operation to both sides, we get
a+b+cabc1abbcca=tan(π)\dfrac{a+b+c-abc}{1-ab-bc-ca}=\tan (\pi )
As we know that the value of tan(π)\tan (\pi ) is 0 and tan1(tanθ)=θ{{\tan }^{-1}}\left( \tan \theta \right)=\theta , so we simplified the above expression as,
a+b+cabc1abbcca=0\dfrac{a+b+c-abc}{1-ab-bc-ca}=0
Now, taking the denominator of the left-hand side to the right-hand side and multiplying it with 0. So, the right-hand side is 0. So, the remaining equation is
a+b+cabc=0 a+b+c=abc \begin{aligned} & \Rightarrow a+b+c-abc=0 \\\ & \Rightarrow a+b+c=abc \\\ \end{aligned}
Hence, we proved the equivalence of both sides as required in the problem.

Note: The key concept involved in solving this problem is the knowledge of inverse properties related to tan function. Students must be careful while solving the fraction which involves a variety of terms. Silly mistakes are bound to occur in that particular section.