Solveeit Logo

Question

Question: If \(T_{n} = \frac{3^{n}}{2(n!)} - \frac{1}{2(n!)},\) then \(S_{\infty} =\)...

If Tn=3n2(n!)12(n!),T_{n} = \frac{3^{n}}{2(n!)} - \frac{1}{2(n!)}, then S=S_{\infty} =

A

e312\frac{e^{3} - 1}{2}

B

e3e2\frac{e^{3} - e}{2}

C

e32\frac{e - 3}{2}

D

None of these

Answer

e3e2\frac{e^{3} - e}{2}

Explanation

Solution

Given that logex1+x\log_{e}\frac{x}{1 + x}

Therefore sum of the series

=11.2.3+13.4.5+15.6.7+.....=\frac{1}{1.2.3} + \frac{1}{3.4.5} + \frac{1}{5.6.7} + .....\infty =

=12[{1+31!+322!+.}{1+11!+12!+.}]= \frac { 1 } { 2 } \left[ \left\{ 1 + \frac { 3 } { 1 ! } + \frac { 3 ^ { 2 } } { 2 ! } + \ldots .\right\} - \left\{ 1 + \frac { 1 } { 1 ! } + \frac { 1 } { 2 ! } + \ldots .\right\} \right] loge212\log_{e}2 - \frac{1}{2}.