Solveeit Logo

Question

Mathematics Question on Sequence and series

If TrT_r is the rrth term of an AP, for r=1,2,3,....r = 1,2,3,.... .If for some positive integers m and n, we have Tm=1nT_m=\frac{1}{n} and Tm=1mT_m=\frac{1}{m} then TmnT_{mn} equals

A

1mn\frac{1}{mn}

B

1m+1n\frac{1}{m}+\frac{1}{n}

C

1

D

0

Answer

1

Explanation

Solution

Let \hspace20mm T_m = a +(m-1) d = \frac{1}{n} \hspace20mm ...(i)
and \hspace20mm T_n = a +(n-1) d = \frac{1}{m} \hspace20mm ...(ii)
on substracting E (ii) from E (i), we get
(mn)d=1n1m=mnmn\, \, \, (m-n) \, d= \frac{1}{n} - \frac{1}{m} = \frac{m-n}{mn}
\Rightarrow \hspace10mm d=\frac{1}{mn}
Again, Tmn=a+(mn1)d=a+(mnn+n1)d T_{mn} = a\, +\, (mn-1)\, d = a \, + (mn-n+n-1) \, d
\hspace25mm = a\, +\, (n-1)\, d +\, (mn-n) \, d
\hspace25mm = T_n\, +n \, (m-1)\, \frac{1}{mn} = \frac{1}{m} \, + \frac{(m-1)}{m} \, = 1