Solveeit Logo

Question

Question: If \({T_n} = {\sin ^n}x + {\cos ^n}x\), prove that \(\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5...

If Tn=sinnx+cosnx{T_n} = {\sin ^n}x + {\cos ^n}x, prove that T3T5T1=T5T7T3\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}} .

Explanation

Solution

In this problem, first we will find L.H.S. part T3T5T1\dfrac{{{T_3} - {T_5}}}{{{T_1}}} by putting n=1,3,5n = 1,3,5 in Tn=sinnx+cosnx{T_n} = {\sin ^n}x + {\cos ^n}x. Then, we will find R.H.S. part T5T7T3\dfrac{{{T_5} - {T_7}}}{{{T_3}}} by putting n=3,5,7n = 3,5,7 in Tn=sinnx+cosnx{T_n} = {\sin ^n}x + {\cos ^n}x. Also we will use the identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.

Complete step by step solution: In this problem, it is given that Tn=sinnx+cosnx  (1){T_n} = {\sin ^n}x + {\cos ^n}x\; \cdots \cdots \left( 1 \right).
Let us find T1{T_1} by putting n=1n = 1 in equation (1)\left( 1 \right). Therefore, we get T1=sin1x+cos1x=sinx+cosx  (2){T_1} = {\sin ^1}x + {\cos ^1}x = \sin x + \cos x\; \cdots \cdots \left( 2 \right)
Let us find T3{T_3} by putting n=3n = 3 in equation (1)\left( 1 \right). Therefore, we get T3=sin3x+cos3x  (3){T_3} = {\sin ^3}x + {\cos ^3}x\; \cdots \cdots \left( 3 \right)
Let us find T5{T_5} by putting n=5n = 5 in equation (1)\left( 1 \right). Therefore, we get T5=sin5x+cos5x  (4){T_5} = {\sin ^5}x + {\cos ^5}x\; \cdots \cdots \left( 4 \right)
Now we are going to find L.H.S. part T3T5T1\dfrac{{{T_3} - {T_5}}}{{{T_1}}} by using equations (2),(3)\left( 2 \right),\left( 3 \right) and (4)\left( 4 \right).
L.H.S. =T3T5T1 = \dfrac{{{T_3} - {T_5}}}{{{T_1}}}
=(sin3x+cos3x)(sin5x+cos5x)sinx+cosx= \dfrac{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right) - \left( {{{\sin }^5}x + {{\cos }^5}x} \right)}}{{\sin x + \cos x}}
=sin3x+cos3xsin5xcos5xsinx+cosx= \dfrac{{{{\sin }^3}x + {{\cos }^3}x - {{\sin }^5}x - {{\cos }^5}x}}{{\sin x + \cos x}}
Rewrite the above equation, we get
=sin3xsin5x+cos3xcos5xsinx+cosx= \dfrac{{{{\sin }^3}x - {{\sin }^5}x + {{\cos }^3}x - {{\cos }^5}x}}{{\sin x + \cos x}}
=sin3x(1sin2x)+cos3x(1cos2x)sinx+cosx= \dfrac{{{{\sin }^3}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^3}x\left( {1 - {{\cos }^2}x} \right)}}{{\sin x + \cos x}}
Now we are going to use Pythagorean identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1. Note that sin2x+cos2x=1sin2x=1cos2x{\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x or cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x.
\Rightarrow L.H.S. =sin3x(cos2x)+cos3x(sin2x)sinx+cosx = \dfrac{{{{\sin }^3}x\left( {{{\cos }^2}x} \right) + {{\cos }^3}x\left( {{{\sin }^2}x} \right)}}{{\sin x + \cos x}}
Taking sin2xcos2x{\sin ^2}x \cdot {\cos ^2}x common out from the numerator, we get
L.H.S. =sin2xcos2x(sinx+cosx)sinx+cosx = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}
On cancellation of the factor sinx+cosx\sin x + \cos x, we get
L.H.S. =sin2xcos2x = {\sin ^2}x \cdot {\cos ^2}x
Therefore, we get T3T5T1=sin2xcos2x\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = {\sin ^2}x \cdot {\cos ^2}x.
Let us find T7{T_7} by putting n=7n = 7 in equation (1)\left( 1 \right). Therefore, we get T7=sin7x+cos7x  (5){T_7} = {\sin ^7}x + {\cos ^7}x\; \cdots \cdots \left( 5 \right).
Now we are going to find R.H.S. part T5T7T3\dfrac{{{T_5} - {T_7}}}{{{T_3}}} by using equations (3),(4)\left( 3 \right),\left( 4 \right) and (5)\left( 5 \right).
R.H.S. =T5T7T3 = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}
=(sin5x+cos5x)(sin7x+cos7x)sin3x+cos3x= \dfrac{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right) - \left( {{{\sin }^7}x + {{\cos }^7}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}
=sin5x+cos5xsin7xcos7xsin3x+cos3x= \dfrac{{{{\sin }^5}x + {{\cos }^5}x - {{\sin }^7}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}
Rewrite the above equation, we get
=sin5xsin7x+cos5xcos7xsin3x+cos3x= \dfrac{{{{\sin }^5}x - {{\sin }^7}x + {{\cos }^5}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}
=sin5x(1sin2x)+cos5x(1cos2x)sin3x+cos3x= \dfrac{{{{\sin }^5}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^5}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}
Now we are going to use Pythagorean identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1. Note that sin2x+cos2x=1sin2x=1cos2x{\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x or cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x.
\Rightarrow R.H.S. =sin5x(cos2x)+cos5x(sin2x)sin3x+cos3x = \dfrac{{{{\sin }^5}x\left( {{{\cos }^2}x} \right) + {{\cos }^5}x\left( {{{\sin }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}
Taking sin2xcos2x{\sin ^2}x \cdot {\cos ^2}x common out from the numerator, we get
R.H.S. =sin2xcos2x(sin3x+cos3x)sin3x+cos3x = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}
On cancellation of the factor sin3x+cos3x{\sin ^3}x + {\cos ^3}x, we get
R.H.S. =sin2xcos2x = {\sin ^2}x \cdot {\cos ^2}x
Therefore, we get T5T7T3=sin2xcos2x\dfrac{{{T_5} - {T_7}}}{{{T_3}}} = {\sin ^2}x \cdot {\cos ^2}x.
Therefore, we can say that T3T5T1=T5T7T3\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}.

Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities cosec2xcot2x=1\cos e{c^2}x - {\cot ^2}x = 1 and sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1 to solve many trigonometric problems. These identities are called Pythagorean identities.