Solveeit Logo

Question

Mathematics Question on Sequence and series

If TnT_n denotes the nthnth term of the series 2+3+6+11+18+......,2 + 3 + 6 + 11 + 18 + ...... , then T50T_{50} is equal to

A

492+249^2+2

B

49249^2

C

502+150^2+1

D

4921.49^2-1.

Answer

492+249^2+2

Explanation

Solution

Let Sn=2+3+6+11+18+......+TnS_{n}= 2 + 3 + 6 +11+ 18 +......+ T_{n} Also Sn=2+3+6+11+......+Tn1+TnS_{n}= 2 + 3 + 6 + 11+......+ T_{n-1} + T_{n} 0=2+(1+3+5+7+.... upto(n1) term)Tn \therefore 0 = 2 + \left(1 + 3 + 5 + 7 + .... {\text{ upto}} \left(n - 1\right){\text{ term}}\right) - T_{n} Tn=2+1+3+5+7+......upto(n1)terms \therefore T_{n} = 2+ 1+ 3 + 5 + 7 + ...... {\text{upto}} \left(n - 1\right) {\text{terms}} =2+n12[2.1+(n2)2]= 2+\frac{n-1}{2}\left[2.1+\left(n-2\right)2\right] =2+(n1)[1+n2]=2+\left(n-1\right)\left[1+n-2\right] =2+(n1)(n1)= 2+\left(n-1\right)\left(n-1\right) T50=492+2\therefore T_{50} = 49^{2}+2