Solveeit Logo

Question

Mathematics Question on Conic sections

If tt is the parameter for one end of a focal chord of the parabola y2=4axy^2 = 4ax, then its length is

A

a(t+1t)2a\left(t+\frac{1}{t}\right)^2

B

a(t1t)2a\left(t-\frac{1}{t}\right)^2

C

a(t+1t)a\left(t+\frac{1}{t}\right)

D

a(t1t)a\left(t-\frac{1}{t}\right)

Answer

a(t+1t)2a\left(t+\frac{1}{t}\right)^2

Explanation

Solution

If t,tt, t' are the ends of the focal chord of parabola y2=4axy^{2}= 4ax, then its length =a(tt)2 = a\left(t'-t\right)^{2} But for a focal chord tt=1tt' =-1 t=1t \therefore t' = -\frac{1}{t} \therefore reqd. length =a(1tt)2= a\left(-\frac{1}{t} -t\right)^{2} =a(t+1t)2= a\left(t+\frac{1}{t}\right)^{2}