Question
Mathematics Question on Quadratic Equations
If [t] denotes the greatest integer ≤ t, then the value of 0∫1[2x−|3x2−5x+2|+1]dx is
A
637+13−4
B
637−13−4
C
6−37−13+4
D
6−37+13+4
Answer
637+13−4
Explanation
Solution
I=0∫1[2x−|3x2–5x+2|+1]dx
I=\int\limits_{0}^{2/3}$$[\underbrace{ -3x^2+7x-2 }_{I1}]dx+2/3∫1[[I23x2−3x+2]
I1=0∫t1(−2)dx+t1∫1/3(−1)dx+1/3∫t20.dx+t2∫2/3dx
=−t1−t2+31,
Where, t1=67−37, and t2=67−13
I2=2/3∫11dx=31
∴ I=31−t1−t2+31+1
=35−[67−37+67−13]
=637+13−4
So, the correct option is (A): 637+13−4