Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If [t] denotes the greatest integer ≤ t, then the value of 01\int\limits_{0}^{1}[2x−|3x23x^2−5x+2|+1]dx is

A

37+1346\frac{\sqrt37+\sqrt13-4}{6}

B

371346\frac{\sqrt37-\sqrt13-4}{6}

C

3713+46\frac{\sqrt-37-\sqrt13+4}{6}

D

37+13+46\frac{-\sqrt37+\sqrt13+4}{6}

Answer

37+1346\frac{\sqrt37+\sqrt13-4}{6}

Explanation

Solution

I=01\int\limits_{0}^{1}[2x−|3x23x^2–5x+2|+1]dx

I=\int\limits_{0}^{2/3}$$[\underbrace{ -3x^2+7x-2 }_{I1}]dx+2/31\int\limits_{2/3}^{1}[[3x23x+2I2][\underbrace{ 3x^2-3x+2 }_{I2}]

I1I_1=0t1\int\limits_{0}^{t_1}(−2)dx+t11/3\int\limits_{t_1}^{1/3}(−1)dx+1/3t2\int\limits_{1/3}^{t_2}0.dx+t22/3\int\limits_{t_2}^{2/3}dx
=t1t2-t_1-t_2+13\frac{1}{3},

Where, t1=7376t_1=\frac{7-\sqrt37}{6}, and t2=7136t_2 = \frac{7-\sqrt13}{6}

I2I_2=2/311dx=13\int\limits_{2/3}^{1}1dx=\frac{1}{3}
I=13t1t2+13+1I = \frac{1}{3}-t_1-t_2+\frac{1}{3}+1
=53[7376+7136]\frac{5}{3} - [\frac{7-\sqrt37}{6}+\frac{7-\sqrt13}{6}]

=37+1346=\frac{\sqrt37+\sqrt13-4}{6}
So, the correct option is (A): 37+1346\frac{\sqrt37+\sqrt13-4}{6}