Solveeit Logo

Question

Mathematics Question on Determinants

If t5_5, t10_{10} and t25_{25} are 5th^{th}, 10th^{th}, and 25th^{th} terms of an A.P. respectively, then the value of t5t10t25 51025 111\begin{vmatrix}t_{5}&t_{10}&t_{25}\\\ 5&10&25\\\ 1&1&1\end{vmatrix} is equal to

A

-40

B

1

C

-1

D

0

Answer

0

Explanation

Solution

Let aa and dd be the first and common difference of an AP.
Then, t5=a+4d t_{5}=a+4 d
t10=a+9dt_{10}=a+9 d
and t25=a+24d t_{25}=a+24 d
Now, Let Δ=t5t10t25 51025 111\Delta=\begin{vmatrix}t_{5} & t_{10} & t_{25} \\\ 5 & 10 & 25 \\\ 1 & 1 & 1\end{vmatrix}
=a+4da+9da+24d 51025 111=\begin{vmatrix}a+4 d & a+9 d & a+24 d \\\ 5 & 10 & 25 \\\ 1 & 1 & 1\end{vmatrix}
On applying operation
C2C2C1C _{2} \to C _{2}- C _{1} and C3C3C1C _{3} \to C _{3}- C _{1}, we get
Δ=a+4d5d20d\5520\100\Delta=\begin{vmatrix}a+4 d & 5 d & 20 d \\\5 & 5 & 20 \\\1 & 0 & 0\end{vmatrix}
On expanding along R3R_{3}, we get
Δ=100d100d=0\Delta=100 \,d-100\, d=0