Solveeit Logo

Question

Question: If \(t={{45}^{\circ }}\) then what is the value of \(\sec \left( t \right)\sin \left( t \right)-\csc...

If t=45t={{45}^{\circ }} then what is the value of sec(t)sin(t)csc(t)cos(t)\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right)?
(a) -2
(b) -1
(c) 0
(d) π2\dfrac{\pi }{2}
(e) None of the above

Explanation

Solution

Assume the given expression as E and use the conversions secx=1cosx\sec x=\dfrac{1}{\cos x} and cscx=1sinx\csc x=\dfrac{1}{\sin x} to simplify the expression. Now, convert the expression into the trigonometric expression containing the tangent and the co – tangent function by using the conversions sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x and cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x. Finally, substitute the value of angle t=45t={{45}^{\circ }} and use the values tan45=1\tan {{45}^{\circ }}=1 and cot45=1\cot {{45}^{\circ }}=1 to get the answer.

Complete step-by-step solution:
Here we have been provided with the expression sec(t)sin(t)csc(t)cos(t)\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right) and we have to find its value for the provided angle t=45t={{45}^{\circ }}. Let us assume the given expression as E, so we have,
E=sec(t)sin(t)csc(t)cos(t)\Rightarrow E=\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right)
Using the conversions secx=1cosx\sec x=\dfrac{1}{\cos x} and cscx=1sinx\csc x=\dfrac{1}{\sin x} we get,
E=1cos(t)×sin(t)1sin(t)×cos(t) E=sin(t)cos(t)cos(t)sin(t) \begin{aligned} & \Rightarrow E=\dfrac{1}{\cos \left( t \right)}\times \sin \left( t \right)-\dfrac{1}{\sin \left( t \right)}\times \cos \left( t \right) \\\ & \Rightarrow E=\dfrac{\sin \left( t \right)}{\cos \left( t \right)}-\dfrac{\cos \left( t \right)}{\sin \left( t \right)} \\\ \end{aligned}
We know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x and cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x, so we can write the above expression as: -
E=tan(t)cot(t)\Rightarrow E=\tan \left( t \right)-\cot \left( t \right)
Substituting the value of the given angle t=45t={{45}^{\circ }} and using the values tan45=1\tan {{45}^{\circ }}=1 and cot45=1\cot {{45}^{\circ }}=1 we get,

& \Rightarrow E=\tan \left( {{45}^{\circ }} \right)-\cot \left( {{45}^{\circ }} \right) \\\ & \Rightarrow E=1-1 \\\ & \therefore E=0 \\\ \end{aligned}$$ **Hence, option (c) is the correct answer.** **Note:** Note that you can also simplify the expression in a different way. You can take the L.C.M and write the expression as $\dfrac{{{\sin }^{2}}\left( t \right)-{{\cos }^{2}}\left( t \right)}{\sin \left( t \right)\cos \left( t \right)}$ and then use the identity ${{\cos }^{2}}\left( t \right)-{{\sin }^{2}}\left( t \right)=\cos \left( 2t \right)$ to simplify the numerator. Then we will put the value of $t={{45}^{\circ }}$ and use the value $\cos {{90}^{\circ }}=0$ to get the answer. You must remember the values of all the trigonometric function for some particular angles like ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}$ and ${{90}^{\circ }}$. In higher trigonometry we also have to learn the trigonometric values of angles ${{18}^{\circ }},{{36}^{\circ }},{{54}^{\circ }}$ and ${{72}^{\circ }}$. Also remember an important identity $2\sin \left( t \right)\cos \left( t \right)=\sin \left( 2t \right)$ in case you want to simplify the denominator and use the value $\sin {{90}^{\circ }}=1$.