Question
Question: If \(t={{45}^{\circ }}\) then what is the value of \(\sec \left( t \right)\sin \left( t \right)-\csc...
If t=45∘ then what is the value of sec(t)sin(t)−csc(t)cos(t)?
(a) -2
(b) -1
(c) 0
(d) 2π
(e) None of the above
Solution
Assume the given expression as E and use the conversions secx=cosx1 and cscx=sinx1 to simplify the expression. Now, convert the expression into the trigonometric expression containing the tangent and the co – tangent function by using the conversions cosxsinx=tanx and sinxcosx=cotx. Finally, substitute the value of angle t=45∘ and use the values tan45∘=1 and cot45∘=1 to get the answer.
Complete step-by-step solution:
Here we have been provided with the expression sec(t)sin(t)−csc(t)cos(t) and we have to find its value for the provided angle t=45∘. Let us assume the given expression as E, so we have,
⇒E=sec(t)sin(t)−csc(t)cos(t)
Using the conversions secx=cosx1 and cscx=sinx1 we get,
⇒E=cos(t)1×sin(t)−sin(t)1×cos(t)⇒E=cos(t)sin(t)−sin(t)cos(t)
We know that cosxsinx=tanx and sinxcosx=cotx, so we can write the above expression as: -
⇒E=tan(t)−cot(t)
Substituting the value of the given angle t=45∘ and using the values tan45∘=1 and cot45∘=1 we get,