Solveeit Logo

Question

Question: If t = -2, then find the value of \[{\log _4}\left( {\dfrac{{{t^2}}}{4}} \right) - 2{\log _4}\left( ...

If t = -2, then find the value of log4(t24)2log4(4t4){\log _4}\left( {\dfrac{{{t^2}}}{4}} \right) - 2{\log _4}\left( {4{t^4}} \right)\:.
a) 22
b) 4 - 4
c) 6 - 6
d) 00

Explanation

Solution

Here, in the question given to us, we would first of all, substitute the value of tt in the given expression log4(t24)2log4(4t4){\log _4}\left( {\dfrac{{{t^2}}}{4}} \right) - 2{\log _4}\left( {4{t^4}} \right)\:. Then we will further use the properties of logarithm to solve the expression log4(t24)2log4(4t4){\log _4}\left( {\dfrac{{{t^2}}}{4}} \right) - 2{\log _4}\left( {4{t^4}} \right)\: for t=2t = - 2. After using properties this equation turns into an easy addition and subtraction.
Formula used: Let aa be the variable and base of the logarithm and be any yy be any constant or variable that is power of variableaa. Then we used the following properties of logarithm here.

loga1=0 logaa=1 logaay=y  {\log _a}1 = 0 \\\ {\log _a}a = 1 \\\ {\log _a}{a^y} = y \\\

Complete step-by-step solution:
To solve the given question, we first put the value of t=2t = - 2 in the expression log4(t24)2log4(4t4){\log _4}\left( {\dfrac{{{t^2}}}{4}} \right) - 2{\log _4}\left( {4{t^4}} \right)\:Hence,

log4((2)24)2log4(4(2)4)   log4(44)2log4(4×16)   log4(1)2log4(64)  (1)  \Rightarrow {\log _4}\left( {\dfrac{{{{( - 2)}^2}}}{4}} \right) - 2{\log _4}\left( {4{{( - 2)}^4}} \right)\;\, \\\ \Rightarrow {\log _4}\left( {\dfrac{4}{4}} \right) - 2{\log _4}\left( {4 \times 16} \right)\; \\\ \Rightarrow {\log _4}\left( 1 \right) - 2{\log _4}\left( {64} \right)\;\,\,\,\,\,{\mkern 1mu} {\mkern 1mu} \to (1) \\\

Now we know that, loga1=0{\log _a}1 = 0 and 43=64{4^3} = 64, then we use the given values in equation (1)(1)
02log4(4)3\Rightarrow 0 - 2{\log _4}{\left( 4 \right)^3}
We now use another logarithmic property according to which
logaay=y{\log _a}{a^y} = y and logaa=1{\log _a}a = 1.
Using this property we move ahead as

\Rightarrow - (2 \times 3){\log _4}\left( 4 \right) \\\ \Rightarrow - 6 $$ **Thus from the above step we can say that the value of a given expression for a particular value $$t = - 2$$ comes out to be c) $$ - 6$$.** **Note:** This is to note here that the value of $$\log 1$$ for any value of base is always zero. Value of log is never negative and its least value is zero. Logarithmic function is always a monotonously increasing function. Logarithmic function is the inverse of exponential function. When the log contains exponential $$e$$ as base, then that log function is said to be a natural log.