Question
Question: If \[{t_1},{t_2},{t_3},{t_4},{t_5}\] be in a A.P. of common difference \[d\] then the value of \[D =...
If t1,t2,t3,t4,t5 be in a A.P. of common difference d then the value of D = \left| {\begin{array}{*{20}{c}}
{{t_2}{t_3}}&{{t_2}}&{{t_1}} \\\
{{t_3}{t_4}}&{{t_3}}&{{t_2}} \\\
{{t_4}{t_5}}&{{t_4}}&{{t_3}}
\end{array}} \right| is 2d4.
A. True
B. False
Solution
In this question we are given a statement we have to check if it is true or false. Solve the determinant using row transformation and to find its value. The common difference of the series in A.P. is equal to the difference between two successive terms. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given that the terms t1,t2,t3,t4,t5 are in A.P. Since the common difference of the series in A.P. is equal to the difference between two successive terms, we have
⇒d=(t5−t4)=(t4−t3)=(t3−t2)=(t2−t1)
Also, we have 2d=t5−t3=t4−t2
Now, we have to find the value of D = \left| {\begin{array}{*{20}{c}}
{{t_2}{t_3}}&{{t_2}}&{{t_1}} \\\
{{t_3}{t_4}}&{{t_3}}&{{t_2}} \\\
{{t_4}{t_5}}&{{t_4}}&{{t_3}}
\end{array}} \right|
Apply Row transformation R3→R3−R2, we have
Applying Row transformation R2→R2−R1
\Rightarrow D = \left| {\begin{array}{*{20}{c}} {{t_2}{t_3}}&{{t_2}}&{{t_1}} \\\ {{t_3}\left( {{t_4} - {t_2}} \right)}&{{t_3} - {t_2}}&{{t_2} - {t_1}} \\\ {{t_4} \times 2d}&d;&d; \end{array}} \right| \\\ \Rightarrow D = \left| {\begin{array}{*{20}{c}} {{t_2}{t_3}}&{{t_2}}&{{t_1}} \\\ {{t_3} \times 2d}&d;&d; \\\ {{t_4} \times 2d}&d;&d; \end{array}} \right| \\\Taking as d common in 1st and 2nd row, we have
{{t_2}{t_3}}&{{t_2}}&{{t_1}} \\\ {2{t_3}}&1&1 \\\ {2{t_4}}&1&1 \end{array}} \right|$$ Applying the row transformation $${R_3} \to {R_3} - {R_2}$$\Rightarrow D = {d^2}\left| {\begin{array}{{20}{c}}
{{t_2}{t_3}}&{{t_2}}&{{t_1}} \\
{2{t_3}}&1&1 \\
{2\left( {{t_4} - {t_3}} \right)}&{1 - 1}&{1 - 1}
\end{array}} \right| \\
\Rightarrow D = {d^2}\left| {\begin{array}{{20}{c}}
{{t_2}{t_3}}&{{t_2}}&{{t_1}} \\
{2{t_3}}&1&1 \\
{2d}&0&0
\end{array}} \right| \\
\Rightarrow D = {d^3}\left[ {2\left( {{t_2} - {t_1}} \right) - 0 + 0} \right] \\
\Rightarrow D = {d^3}\left( {2d} \right) \\
\therefore D = 2{d^4} \\