Solveeit Logo

Question

Question: If \({t_1}\) and \({t_2}\) are two extremities of any focal chord of the parabola \({y^2} = 4ax\) th...

If t1{t_1} and t2{t_2} are two extremities of any focal chord of the parabola y2=4ax{y^2} = 4ax thent1t2={t_1}{t_2}=
A. 1 - 1
B. 00
C. ±1 \pm 1
D. 12\dfrac{1}{2}

Explanation

Solution

Hint: In order to solve the problem just find the slopes with the help of coordinates. Then equate both the slopes and get a relation.
Coordinates of end point of focal chord are (at12,2at1),(at22,2at2)\left( {at_1^2,2a{t_1}} \right),\left( {at_2^2,2a{t_2}} \right)and the focus is(a,0)\left( {a,0} \right)
Three points are collinear, so slopes will be same,
2at22at1at22at12=2at20at22a t2t1t22t12=t2t221 t2t1(t2t1)(t2+t1)=t2t221 1(t2+t1)=t2t221 t221=t2(t2+t1)=t1t2+t22 t1t2=1  \Rightarrow \dfrac{{2a{t_2} - 2a{t_1}}}{{at_2^2 - at_1^2}} = \dfrac{{2a{t_2} - 0}}{{at_2^2 - a}} \\\ \Rightarrow \dfrac{{{t_2} - {t_1}}}{{t_2^2 - t_1^2}} = \dfrac{{{t_2}}}{{t_2^2 - 1}} \\\ \Rightarrow \dfrac{{{t_2} - {t_1}}}{{\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}} = \dfrac{{{t_2}}}{{t_2^2 - 1}} \\\ \Rightarrow \dfrac{1}{{\left( {{t_2} + {t_1}} \right)}} = \dfrac{{{t_2}}}{{t_2^2 - 1}} \\\ \Rightarrow t_2^2 - 1 = {t_2}\left( {{t_2} + {t_1}} \right) = {t_1}{t_2} + t_2^2 \\\ \Rightarrow {t_1}{t_2} = - 1 \\\
Hence option A is the correct option.

Note:In such a question where indirectly something is asked from the question, do not try to find all the points, rather try to manipulate the equation with the help of slopes. Like in this problem the 3 points lie on the same line hence collinearity condition could be used.