Solveeit Logo

Question

Question: If system of equations $x + (sin\alpha)y + (sin^2\alpha)z = 0,$ $x + (cos\alpha)y + (cos^2\alpha)z...

If system of equations

x+(sinα)y+(sin2α)z=0,x + (sin\alpha)y + (sin^2\alpha)z = 0,

x+(cosα)y+(cos2α)z=0x + (cos\alpha)y + (cos^2\alpha)z = 0

x+(sin2α)y+(sin22α)z=0x + (sin2\alpha)y + (sin^2 2\alpha)z = 0

has non trivial solutions, then number of distinct values of α\alpha (where α[0,π]\alpha \in [0,\pi]), is

Answer

7

Explanation

Solution

The given system of linear equations is:

x+(sinα)y+(sin2α)z=0x + (\sin\alpha)y + (\sin^2\alpha)z = 0

x+(cosα)y+(cos2α)z=0x + (\cos\alpha)y + (\cos^2\alpha)z = 0

x+(sin2α)y+(sin22α)z=0x + (\sin2\alpha)y + (\sin^2 2\alpha)z = 0

This is a homogeneous system of linear equations. A homogeneous system has non-trivial solutions if and only if the determinant of the coefficient matrix is zero.

The coefficient matrix is:

A=(1sinαsin2α1cosαcos2α1sin2αsin22α)A = \begin{pmatrix} 1 & \sin\alpha & \sin^2\alpha \\ 1 & \cos\alpha & \cos^2\alpha \\ 1 & \sin2\alpha & \sin^2 2\alpha \end{pmatrix}

The determinant of this matrix is of the Vandermonde form 1aa21bb21cc2=(ba)(ca)(cb)\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b), where a=sinαa = \sin\alpha, b=cosαb = \cos\alpha, and c=sin2αc = \sin2\alpha.

So, the determinant of the coefficient matrix is:

det(A)=(cosαsinα)(sin2αsinα)(sin2αcosα)\det(A) = (\cos\alpha - \sin\alpha)(\sin2\alpha - \sin\alpha)(\sin2\alpha - \cos\alpha)

For the system to have non-trivial solutions, the determinant must be zero:

(cosαsinα)(sin2αsinα)(sin2αcosα)=0(\cos\alpha - \sin\alpha)(\sin2\alpha - \sin\alpha)(\sin2\alpha - \cos\alpha) = 0

This equation holds if any of the factors are zero. We need to find the distinct values of α\alpha in the interval [0,π][0, \pi] that satisfy this condition.

Case 1: cosαsinα=0\cos\alpha - \sin\alpha = 0

cosα=sinα\cos\alpha = \sin\alpha

tanα=1\tan\alpha = 1

In the interval [0,π][0, \pi], the solution is α=π4\alpha = \frac{\pi}{4}.

Case 2: sin2αsinα=0\sin2\alpha - \sin\alpha = 0

2sinαcosαsinα=02\sin\alpha\cos\alpha - \sin\alpha = 0

sinα(2cosα1)=0\sin\alpha(2\cos\alpha - 1) = 0

This gives two sub-cases:

a) sinα=0\sin\alpha = 0

In the interval [0,π][0, \pi], the solutions are α=0\alpha = 0 and α=π\alpha = \pi.

b) 2cosα1=0    cosα=122\cos\alpha - 1 = 0 \implies \cos\alpha = \frac{1}{2}

In the interval [0,π][0, \pi], the solution is α=π3\alpha = \frac{\pi}{3}.

Case 3: sin2αcosα=0\sin2\alpha - \cos\alpha = 0

2sinαcosαcosα=02\sin\alpha\cos\alpha - \cos\alpha = 0

cosα(2sinα1)=0\cos\alpha(2\sin\alpha - 1) = 0

This gives two sub-cases:

a) cosα=0\cos\alpha = 0

In the interval [0,π][0, \pi], the solution is α=π2\alpha = \frac{\pi}{2}.

b) 2sinα1=0    sinα=122\sin\alpha - 1 = 0 \implies \sin\alpha = \frac{1}{2}

In the interval [0,π][0, \pi], the solutions are α=π6\alpha = \frac{\pi}{6} and α=5π6\alpha = \frac{5\pi}{6}.

Combining all the distinct values obtained from the three cases within the interval [0,π][0, \pi]:

From Case 1: π4\frac{\pi}{4}

From Case 2: 0,π,π30, \pi, \frac{\pi}{3}

From Case 3: π2,π6,5π6\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}

The set of all distinct values of α\alpha in [0,π][0, \pi] is {0,π6,π4,π3,π2,5π6,π}\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}, \pi\}.

These values are 0,30,45,60,90,150,1800^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ, 150^\circ, 180^\circ.

All these values are distinct and lie within the interval [0,π][0, \pi].

The number of distinct values of α\alpha is 7.