Solveeit Logo

Question

Question: If $\sum_{r=0}^{3n} a_r (x-4)^r = \sum_{r=0}^{3n} A_r (x-5)^r$ and $a_k = 1 \forall K \ge 2n$ and $\...

If r=03nar(x4)r=r=03nAr(x5)r\sum_{r=0}^{3n} a_r (x-4)^r = \sum_{r=0}^{3n} A_r (x-5)^r and ak=1K2na_k = 1 \forall K \ge 2n and r=03ndr(x8)r=r=03nBr(x9)r\sum_{r=0}^{3n} d_r (x-8)^r = \sum_{r=0}^{3n} B_r (x-9)^r and r=03ndr(x12)r=r=03nDr(x13)r\sum_{r=0}^{3n} d_r (x-12)^r = \sum_{r=0}^{3n} D_r (x-13)^r and dk=1K2nd_k = 1 \forall K \ge 2n. The find the value of A2n+D2nB2n\frac{A_{2n}+D_{2n}}{B_{2n}}.

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

Let P(x)=r=03nar(xc)rP(x) = \sum_{r=0}^{3n} a_r (x-c)^r. If we expand P(x)P(x) in powers of (xd)(x-d), say P(x)=k=03nCk(xd)kP(x) = \sum_{k=0}^{3n} C_k (x-d)^k, then the coefficients CkC_k are related to ara_r by the formula: Ck=r=k3nar(rk)(dc)rkC_k = \sum_{r=k}^{3n} a_r \binom{r}{k} (d-c)^{r-k}.

For the first identity: r=03nar(x4)r=r=03nAr(x5)r\sum_{r=0}^{3n} a_r (x-4)^r = \sum_{r=0}^{3n} A_r (x-5)^r. Here, c=4c=4, ara_r are the coefficients of (x4)r(x-4)^r, and d=5d=5, AkA_k are the coefficients of (x5)k(x-5)^k. Ak=r=k3nar(rk)(54)rk=r=k3nar(rk)A_k = \sum_{r=k}^{3n} a_r \binom{r}{k} (5-4)^{r-k} = \sum_{r=k}^{3n} a_r \binom{r}{k}. Given ak=1a_k = 1 for k2nk \ge 2n. To find A2nA_{2n}: A2n=r=2n3nar(r2n)=r=2n3n1(r2n)A_{2n} = \sum_{r=2n}^{3n} a_r \binom{r}{2n} = \sum_{r=2n}^{3n} 1 \cdot \binom{r}{2n}. Using the hockey-stick identity i=km(ik)=(m+1k+1)\sum_{i=k}^m \binom{i}{k} = \binom{m+1}{k+1}: A2n=(3n+12n+1)A_{2n} = \binom{3n+1}{2n+1}.

For the second identity: r=03ndr(x8)r=r=03nBr(x9)r\sum_{r=0}^{3n} d_r (x-8)^r = \sum_{r=0}^{3n} B_r (x-9)^r. Bk=r=k3ndr(rk)(98)rk=r=k3ndr(rk)B_k = \sum_{r=k}^{3n} d_r \binom{r}{k} (9-8)^{r-k} = \sum_{r=k}^{3n} d_r \binom{r}{k}. Given dk=1d_k = 1 for k2nk \ge 2n. To find B2nB_{2n}: B2n=r=2n3ndr(r2n)=r=2n3n1(r2n)B_{2n} = \sum_{r=2n}^{3n} d_r \binom{r}{2n} = \sum_{r=2n}^{3n} 1 \cdot \binom{r}{2n}. B2n=(3n+12n+1)B_{2n} = \binom{3n+1}{2n+1}.

For the third identity: r=03ndr(x12)r=r=03nDr(x13)r\sum_{r=0}^{3n} d_r (x-12)^r = \sum_{r=0}^{3n} D_r (x-13)^r. Dk=r=k3ndr(rk)(1312)rk=r=k3ndr(rk)D_k = \sum_{r=k}^{3n} d_r \binom{r}{k} (13-12)^{r-k} = \sum_{r=k}^{3n} d_r \binom{r}{k}. Given dk=1d_k = 1 for k2nk \ge 2n. To find D2nD_{2n}: D2n=r=2n3ndr(r2n)=r=2n3n1(r2n)D_{2n} = \sum_{r=2n}^{3n} d_r \binom{r}{2n} = \sum_{r=2n}^{3n} 1 \cdot \binom{r}{2n}. D2n=(3n+12n+1)D_{2n} = \binom{3n+1}{2n+1}.

The required value is A2n+D2nB2n=(3n+12n+1)+(3n+12n+1)(3n+12n+1)=2(3n+12n+1)(3n+12n+1)=2\frac{A_{2n}+D_{2n}}{B_{2n}} = \frac{\binom{3n+1}{2n+1} + \binom{3n+1}{2n+1}}{\binom{3n+1}{2n+1}} = \frac{2 \binom{3n+1}{2n+1}}{\binom{3n+1}{2n+1}} = 2.