Question
Question: If $\sum_{r=0}^{3n} a_r (x-4)^r = \sum_{r=0}^{3n} A_r (x-5)^r$ and $a_k = 1 \forall K \ge 2n$ and $\...
If ∑r=03nar(x−4)r=∑r=03nAr(x−5)r and ak=1∀K≥2n and ∑r=03ndr(x−8)r=∑r=03nBr(x−9)r and ∑r=03ndr(x−12)r=∑r=03nDr(x−13)r and dk=1∀K≥2n. The find the value of B2nA2n+D2n.

1
2
3
4
2
Solution
Let P(x)=∑r=03nar(x−c)r. If we expand P(x) in powers of (x−d), say P(x)=∑k=03nCk(x−d)k, then the coefficients Ck are related to ar by the formula: Ck=∑r=k3nar(kr)(d−c)r−k.
For the first identity: ∑r=03nar(x−4)r=∑r=03nAr(x−5)r. Here, c=4, ar are the coefficients of (x−4)r, and d=5, Ak are the coefficients of (x−5)k. Ak=∑r=k3nar(kr)(5−4)r−k=∑r=k3nar(kr). Given ak=1 for k≥2n. To find A2n: A2n=∑r=2n3nar(2nr)=∑r=2n3n1⋅(2nr). Using the hockey-stick identity ∑i=km(ki)=(k+1m+1): A2n=(2n+13n+1).
For the second identity: ∑r=03ndr(x−8)r=∑r=03nBr(x−9)r. Bk=∑r=k3ndr(kr)(9−8)r−k=∑r=k3ndr(kr). Given dk=1 for k≥2n. To find B2n: B2n=∑r=2n3ndr(2nr)=∑r=2n3n1⋅(2nr). B2n=(2n+13n+1).
For the third identity: ∑r=03ndr(x−12)r=∑r=03nDr(x−13)r. Dk=∑r=k3ndr(kr)(13−12)r−k=∑r=k3ndr(kr). Given dk=1 for k≥2n. To find D2n: D2n=∑r=2n3ndr(2nr)=∑r=2n3n1⋅(2nr). D2n=(2n+13n+1).
The required value is B2nA2n+D2n=(2n+13n+1)(2n+13n+1)+(2n+13n+1)=(2n+13n+1)2(2n+13n+1)=2.
