Solveeit Logo

Question

Question: If \(\sum_{r = 1}^{k}\cos^{- 1}\)β<sub>r</sub> =\(\frac{k\pi}{2}\)for any k ≥ 1 and A =\(\sum_{r = 1...

If r=1kcos1\sum_{r = 1}^{k}\cos^{- 1}βr =kπ2\frac{k\pi}{2}for any k ≥ 1 and A =r=1k(βr)r\sum_{r = 1}^{k}{(\beta_{r})^{r}}, Then(1+x2)1/3(12x)1/4x+x2\frac{(1 + x^{2})^{1/3} - (1 - 2x)^{1/4}}{x + x^{2}}=

A

½

B

0

C

A/2

D

π/2

Answer

½

Explanation

Solution

For k = 1, cos–1 β1 = π2\frac { \pi } { 2 } ⇒ β1 = cos π2\frac { \pi } { 2 } = 0

For k = 2, cos–1 β1 + cos–1β2 = π ⇒ cos–1 β2 = π2\frac { \pi } { 2 } ⇒ β2 = 0

So by induction it can be shown that βj = 0, j = 1……..k.

Hence A = r=1k\sum _ { r = 1 } ^ { k }r)r = 0.

Thus required limit

= limx0\lim _ { x \rightarrow 0 }

= limx0\lim _ { x \rightarrow 0 } = 12\frac { 1 } { 2 }