Question
Question: If \(\sum_{r = 1}^{k}\cos^{- 1}\)β<sub>r</sub> =\(\frac{k\pi}{2}\)for any k ≥ 1 and A =\(\sum_{r = 1...
If ∑r=1kcos−1βr =2kπfor any k ≥ 1 and A =∑r=1k(βr)r, Thenx+x2(1+x2)1/3−(1−2x)1/4=
A
½
B
0
C
A/2
D
π/2
Answer
½
Explanation
Solution
For k = 1, cos–1 β1 = 2π ⇒ β1 = cos 2π = 0
For k = 2, cos–1 β1 + cos–1β2 = π ⇒ cos–1 β2 = 2π ⇒ β2 = 0
So by induction it can be shown that βj = 0, j = 1……..k.
Hence A = ∑r=1k (βr)r = 0.
Thus required limit
= limx→0
= limx→0 = 21