Solveeit Logo

Question

Question: If \(\sum_{r = 1}^{k}{}\) cos<sup>–1</sup>β<sub>r</sub> = \(\frac{k\pi}{2}\) for any k ≥ 1 and A =\(...

If r=1k\sum_{r = 1}^{k}{} cos–1βr = kπ2\frac{k\pi}{2} for any k ≥ 1 and A =r=1k\sum_{r = 1}^{k}{}r)r. Then LimxA\operatorname { Lim } _ { \mathrm { x } \rightarrow \mathrm { A } } (1+x2)1/3(12x)1/4x+x2\frac{(1 + x^{2})^{1/3} - (1 - 2x)^{1/4}}{x + x^{2}} =

A

½

B

0

C

A/2

D

π/2

Answer

½

Explanation

Solution

For k = 1, cos–1 β1 = π2\frac { \pi } { 2 } ⇒ β1 = cos π2\frac { \pi } { 2 } = 0

k = 2, cos–1 β1 + cos–1 β2 = π

⇒ cos–1 β2 = π2\frac { \pi } { 2 } = β2 = 0

By induction βj = 0, j = 1, …… k.

Hence A = r)r = 0

Required limit limx0\lim _ { x \rightarrow 0 }

limx0\lim _ { x \rightarrow 0 } 2x3(1+x2)2/3+24(12x)3/41+2x\frac { \frac { 2 x } { 3 } \left( 1 + x ^ { 2 } \right) ^ { 2 / 3 } + \frac { 2 } { 4 } ( 1 - 2 x ) ^ { 3 / 4 } } { 1 + 2 x } = 12\frac { 1 } { 2 }