Question
Question: If \(\sum_{r = 1}^{k}{}\) cos<sup>–1</sup>β<sub>r</sub> = \(\frac{k\pi}{2}\) for any k ≥ 1 and A =\(...
If ∑r=1k cos–1βr = 2kπ for any k ≥ 1 and A =∑r=1k (βr)r. Then Limx→A x+x2(1+x2)1/3−(1−2x)1/4 =
A
½
B
0
C
A/2
D
π/2
Answer
½
Explanation
Solution
For k = 1, cos–1 β1 = 2π ⇒ β1 = cos 2π = 0
k = 2, cos–1 β1 + cos–1 β2 = π
⇒ cos–1 β2 = 2π = β2 = 0
By induction βj = 0, j = 1, …… k.
Hence A = (βr)r = 0
Required limit limx→0
limx→0 1+2x32x(1+x2)2/3+42(1−2x)3/4 = 21