Solveeit Logo

Question

Question: If $\sum_{n=1}^{49}\frac{1}{\sqrt{n+\sqrt{n^2-1}}}=a+b\sqrt{2}$, if "a & b" are natural numbers then...

If n=1491n+n21=a+b2\sum_{n=1}^{49}\frac{1}{\sqrt{n+\sqrt{n^2-1}}}=a+b\sqrt{2}, if "a & b" are natural numbers then

A

a=5

B

b=3

C

a=8

D

b=1

Answer

a=5, b=3

Explanation

Solution

The general term 1n+n21\frac{1}{\sqrt{n+\sqrt{n^2-1}}} simplifies to 12(n+1n1)\frac{1}{\sqrt{2}}(\sqrt{n+1} - \sqrt{n-1}). The sum becomes a telescoping series 12n=149(n+1n1)\frac{1}{\sqrt{2}} \sum_{n=1}^{49} (\sqrt{n+1} - \sqrt{n-1}). Evaluating this sum yields 5+325 + 3\sqrt{2}. Comparing with a+b2a+b\sqrt{2}, we get a=5a=5 and b=3b=3.