Question
Question: If $\sum_{n=1}^{49}\frac{1}{\sqrt{n+\sqrt{n^2-1}}}=a+b\sqrt{2}$, if "a & b" are natural numbers then...
If ∑n=149n+n2−11=a+b2, if "a & b" are natural numbers then

A
a=5
B
b=3
C
a=8
D
b=1
Answer
a=5, b=3
Explanation
Solution
The general term n+n2−11 simplifies to 21(n+1−n−1). The sum becomes a telescoping series 21∑n=149(n+1−n−1). Evaluating this sum yields 5+32. Comparing with a+b2, we get a=5 and b=3.
