Question
Question: If \(\sum_{n = 1}^{n}\alpha_{n}\)= an<sup>2</sup> + bn, where a, b are constants and a<sub>1</sub>, ...
If ∑n=1nαn= an2 + bn, where a, b are constants and a1, a2, a3 Ī {1, 2, 3, ……., 9} and 25a1, 37a2, 49a3 be three digit numbers, then α1525α1α2737α2α3949α3=
A
a1 + a2 + a3
B
a1 – a2 + a3
C
7
D
0
Answer
0
Explanation
Solution
∑nn=1an = an2 + bn
as sum of a series is a quadratic function of n so this series must be an A.P. so 2a2 = a1 + a3 Applying
R3 ® R3 – (10R2 + R1) α15200α27300α39400
C2 ® C2 – (2C1+C3) = α15200000α39400= 0030